Density Effects in Larval Rearing of Red and Blue King Crab

Ben Daly, Jim Swingle
Alaska Sea Grant
Larval Food Production

Microalgae

Utilized standard commercial hatchery methods

Scaling up microalgae from small volume stock cultures in test tubes and flasks into 100 L production cylinders

Species Produced:

- 3H (Thalassiosira pseudonana)
- T-Iso (Isochrysis galbana)
- PV (Pavlova lutheri)
Larval Food Production

Artemia
(Brine Shrimp nauplii)

Production utilizing standard commercial hatchery techniques

Series of steps leading from cysts to nauplii

- Prehydration/Disinfection
- Incubation
- Hatching
- Harvest of Instar I nauplii
Observations on RKC Larvae Reared in the 1200 L Hatchery Tanks

Primary Goals

• Monitor the effect of different hatchery stocking densities on larval survival

• Conduct a preliminary study testing the effect of a preserved diet vs the standard live diet on larval survival

• Maximize production of juvenile red king crab for subsequent tagging and nursery rearing studies

Note: Observational Study Only! – No Replicated Treatments
Methods: RKC

Tank Setup
Standard Live Diet:
Moderate density – Yellow
High density – Orange
Ultra High Density – Red

Preserved Diet:
High Density – Green

1200 Liter

1.12 m

1.3 m

40/L
67/L
96/L
100/L
194/L
77/L
25/L
42/L
Methods: RKC

Two Diets Tested

Live Diet:
Artemia fed at 2-3/ml once daily
Cultured algae fed at 10,000 to 20,000 cells/ml once daily
Algae species included *Isochrysis galbana*, *Thalassiosira pseudonana*, and *Pavlova lutheri*.

Preserved Diet:
Frozen Artemia fed at 2/ml once daily
Preserved *Isochrysis galbana* concentrate fed at 20,000 cells/ml once daily
Red King Crab Larval Survival
Live Feed Only

Percent survival vs larval stage for different treatment levels:
- Moderate (N=3)
- High (N=2)
- Ultra High (N=1)

Note: The graph shows the survival rates for each larval stage from Z1 to Z4.
Red King Crab Larval Survival: Live vs Preserved Diet

![Graph showing larval survival rates for Standard Live and Preserved diets across larval stages Z1, Z2, and Z3. The graph indicates a decreasing survival rate from Z1 to Z3 for both diets, with Standard Live consistently showing higher survival rates than Preserved.](#)
Blue King Crab

Goals:

Build on knowledge obtained during RKC culture

- Scientifically sound experiment
 - replicates
- Eliminate handling stress
 - Initial and final counts
Methods: BKC

• 3 Treatments
 – 10 larvae/L (12,000 total larvae)
 – 30 larvae/L (36,000 total larvae)
 – 100 larvae/L (120,000 total larvae)
Methods: BKC

Tank Setup

• 3 treatments
 – 3 replicates

1200 Liter

1.3 m

1.12 m

10/L

30/L

100/L

30/L

10/L

30/L

100/L

30/L

100/L

100/L
Methods

Feeding regime: pulse feeding

Artemia (Brine shrimp nauplii)
- 2 *Artemia*/ml
 - 10/L, 30/L
- 4 *Artemia*/ml
 - 100/L

Algae: Isochrysis galbana
- 25,000 cells/ml

(Epelbaum and Kovatcheva 2005)
Water Temperature

date
degree C

Z2
Z3
Z4
G

9 days
9 days
8 days
10 days

Z1 → Z2 → Z3 → Z4 → G
Blue King Crab Larval Survival

Total Organisms

initial Z1 density Glaucothoe

10/L
30/L
100/L
Blue King Crab Larval Survival

![Graph showing the relationship between Z1-G percent survival and stocking density (larvae/L).]
Discussion

• Good survival in early larval stages (RKC + BKC)

• High mortality started around mid to late Z3 (RKC) mid to late Z4 (BKC)
 • All densities

• Continued throughout Glaucothoe/C1
 – Less than 1% survival to C1
Discussion: Possible Causes

Nutritional deficiency?

– Feeding efficiency (turbulent aeration)
 • Influences ability to capture and consume food items

– Food density
 • Diluted with continuous flushing
Discussion: Possible Causes

Water Quality?

• Bacteria
 – *Vibrio* spp.
 – *Leucothrix* spp. (filamentous)

• Contaminants
 – hydrocarbons
Discussion

Learned much about hatchery scale larval rearing

• Experimental and anecdotal observations

Similar trend in both species

Refine methodology

– tease apart and address potential causes of mortality