Whales as sentinels in a changing marine environment in the Gulf of Alaska

Dr. Bree Witteveen
Dr. Lei Guo
Kate Wynne
Outline

• The GAP project
• GAP Whales
• Three examples
 1. Monitoring of index sites
 2. Spatial and temporal trends in habitat use
 3. Consumption modeling
The Gulf Apex Predator-prey Project (GAP)

• Initiated in 1999 to address questions of biologic and economic concern triggered by dramatic declines in Steller sea lions
GAP Whales

- Apex predators that consume massive amounts of prey
- Major population fluctuations
- Recovery is occurring during times of significant environmental change
- Given the breadth of GAP and related data, we now seek to explore the use of whales as sentinels
Monitoring

• Established three VIS
• Each suited for MTL and UTL monitoring
 – Prey data
 – Known importance to foraging whales
 – Near SSL haulouts
 – Commercial fisheries
Monitoring

- Sampling grids
- CTD casts
- Dual frequency backscatter
- Zooplankton samples
- Whale counts, photos & biopsies
Variability Index Sites

• Monitoring of index sites has already shown substantial differences between just two years
• Replicate surveys provide a means of documenting change
• Returning to Marmot Bay in 2014
Aerial Surveys

• Data: Sightings from Aerial Surveys
 – Directed : mid 2007 to Present

• Explore data for spatial and temporal trends and habitat preferences
<table>
<thead>
<tr>
<th></th>
<th>ER</th>
<th>MN</th>
<th>BP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>6.7*</td>
<td>40.0***</td>
<td>4.1</td>
</tr>
<tr>
<td>Year</td>
<td>16.6***</td>
<td>80.1***</td>
<td>0.5</td>
</tr>
<tr>
<td>Month * Year</td>
<td>7.8**</td>
<td>67.7***</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Modeling the data

- Grid – 5km²
- Variables
 - SST (mean & var)
 - Chl a (mean & var)
 - Depth
 - Month
 - Year
 - Latitude
 - Longitude
 - ???
Consumption modeling

• In the CGOA, multiple ecosystem drivers have been suggested
 – Fishing and climate change cannot explain majority
 – Leads to the importance of trophic interactions, including whales
Consumption modeling

• Current ecosystem models estimate baleen whales having small roles
• But...models have low resolution
 – Spatial: regional (GOA) vs. mesoscale (10’s to 100’s km)
 – Temporal: annual vs. seasonal
The GAP Approach

- Bioenergetic model
- Summer consumption estimates only
- Meso-scale (near-shore Kodiak)
- Example: ATF vs. Humpback whales
Comparing impacts
ATF vs. Humpback whales

• Similarities
 – Population trends
 – Low exploitation rates

• Differences
 – Mobility
 – Seasonality
 – Life span
 – Consumption ratios (Q:B; 6 vs 1.5)
Comparing impacts
ATF vs. Humpback whales

- Humpback whales ~ 10.7 kg km$^{-2}$day$^{-1}$
- ATF ~ 28.9 kg km$^{-2}$day$^{-1}$
 – shows great spatial variation
- High for ATF and low for whales?
- Essential to consider in the context of spatial variation
Avg humpback whale consumption = 10.7 kg km\(^{-2}\) day\(^{-1}\)
Avg ATF consumption = 28.9 10.7 kg km\(^{-2}\) day\(^{-1}\)
Next steps

• Use existing framework and hypothetical scenarios
 – Change abundance, diet, prey availability
• Improve whale spatial component using results from habitat model
• How will local energy pathway(s) be modified?
• How much potential impact on SSL?
Looking ahead

• Results have the potential to shed unique insights into roles of whales in marine ecosystems on fine scales
• Diverse methodologies take advantage of GAP’s long time-series data
• Design of future studies and data collection
• Use other available data
 – Stable isotopes, dive behavior
Acknowledgements

- UAF-KSMSC
- ADF&G: Matt Foster, Mark Witteveen, Crew of R/V Resolution
- NOAA/NMFS: Bob Foy, Alex De Robertis, Kerim Aydin, Geoff Lang, Megan Fergson
- Dave Kubiak, F/V Mythos
- Jay Stintson, F/V Alaskan
- Annie Fiske
- Jordy Tompson
- Casey Clark
- Pingree Family
- Jo Pflaum
- Andrea Croll
- Chris Ford
- Aaren & Brian Ellsworth
- Mike Trussell
- Natura Richardson
- Sophie Piersalowski
- Dana Wright
- Sadie Youngstrom

- Funding through NOAA grants NA04NMF4390158, NA07NMF4390339, NA08NMF4380533, NA09NMF4390339, NA10NMF4390295
- Research conducted under permits: NOAA #1047-1718, 14296 and UAF IACUC 05-20 and 08-25
<table>
<thead>
<tr>
<th>Site</th>
<th>Average Backscatter (s_A)</th>
<th>Number of Whales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fish</td>
<td>Zoop</td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marmot</td>
<td>99</td>
<td>277</td>
</tr>
<tr>
<td>Shuyak</td>
<td>638</td>
<td>230</td>
</tr>
<tr>
<td>Uganik</td>
<td>588</td>
<td>62</td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marmot</td>
<td>1345</td>
<td>53</td>
</tr>
<tr>
<td>Shuyak</td>
<td>420</td>
<td>8</td>
</tr>
<tr>
<td>Uganik</td>
<td>906</td>
<td>13</td>
</tr>
</tbody>
</table>
Foraging Ecology

- Fins ~ Zooplankton
- Humpbacks ~ Capelin
- Overlap when euphausiidiid density very high