INTRODUCTION TO LITTLENECK CLAM FARMING IN ALASKA By **Raymond RaLonde** University of Alaska Fairbanks **School of Fisheries and Ocean Science** Marine Advisory Program

THE LITTLENECK CLAM

- Often called steamer
- Native species
 - Prototheca staminea
- Abundant wild populations
- Market price 2.25-2.50/lb.
- Market size in 4-5 years.
- High quality and save shellfish.

WHY CLAM FARMING? The rationale

- Processes that sustain a bivalve population are complex
- Natural recruitment, growth, and survival are quite variable from year to year
- Easy to overexploit a population
- Need to monitor the population to assure sustainability
- Many countries have adopted aquaculture

WHY CLAM FARMING? Marketing

- Demand exceeds supply
 - Importing is required
- Requests for local clams
- Product diversity for farm production
 - Adds market security
- Market consistency in deliver and quality
- Environmentally friendly
 - Peer review literature shows pose effects of clam farming
 - Environmental endorsements fre
 - Blue Water Institute
 - Monteray Bay Aquarium
 - Environmental Defense Fund

THE CLAM AQUACULTURE PROCESS

SITE SELECTION

- Land use designation
- Historical and existing uses
- Sensitive areas as designated by ADNR and ADF&G
- Essential habitat
 - E.g. Eel grass
- Substrate
- Beach slope
- Water current

- Evidence of water forces
- Inventory data
- PSP testing

 Butter clam test
- Current use of tideland
- Market
- Transportation
- Labor
- Water quality
 - Fecal coliform
 - Uplands use

DEVELOPING A LITTLENECK CLAM FARM PRODUCTION PLAN

- Pre farming inventory and commercial harvest.
- Determine the distribution of clams on the beach.
- Inventory the beach population from at least 11 plots one square foot per acre.
- Measure clams and develop a length frequency distribution.
- Interpret the length frequency distribution to calculate current
- Develop the management plan.
 - Population control, seeding plan, harvest plan.

TYPICAL CLAM BEACH INVENTORY PLOT

Four substrate types suitable for clam farming ranging from fine (A) to sand Gravel/cobble mixture (B). UPLAND

OCEAN

The red circles are random sample plots. The number of plots in each substrate type is determine by the relative area represented by the sample type. Substrate A is the smallest area represented by two plots, while the remaining sites are all about the same size and each larger than plot A, thus each has three sample plots

SAMPLE PLOTS IDENTIFIED

SAMPLING

SIFT THROUGH 3/4" SIEVE

LENGTH MEASUREMENT

DEVELOP LENGTH FREQUENCY GRAPHS

BLUE WATER

- Poor recruitment
- Don't know the cause
 - Very enclosed embayment
 - Likely irregular recruitment
- Density is good
 - Growth is likely good
- Harvest will be decreasing
- Post commercial harvest seeding is required at 60 Clams/ft²

Pre harvest 52.21 clams/ft² Legal size 40.37 clams/ft²

TENASS PASS

- Good recruitment of year one age class
- Sizable harvest population
 - Removal of very large clams will increase growth rate of small clams
 - With years 2 and 3 being small year class contributors controlling the harvest will sustain the harvest through time
- Removal of the large clams may improve survival and increase recruitment
 - Survey the following year
- Post commercial harvest seeding at about 40 clams/ft²

Pre harvest 69.60 clams/ft² Legal size 38.94 clams/ft²

CANOE LAGOON

- Very good recruitment
- Not many harvestable size clams
 - But harvest will be sustainable every year
- Density is right at maximum for best growth
- Removal of above 38 mm clams will likely improve growth and survival of younger clams
- Post commercial harvest seeding at 30 clams/ft²

Pre harvest 62.62 clams/ft² Legal size 21.63 clams/ft²

FIRST HARVEST ESTMATE FOR ONE ACRE

Length class	Sample No.	Percent	Total Number/ sq ft.	Number/acre
0-5	12	4.51%	2	83,812
6-10	47	17.67%	8	328,264
11-15	30	11.28%	5	209,530
16-20	24	9.02%	4	167,624
21-25	27	10.15%	4	188,577
26-30	45	16.92%	7	314,295
31-35	49	18.42%	8	342,233
36-37	11	4.14%	2	76,828
38 & above	21	7.89%	3	146,671
Total	266		43	1,857,834
Length class	Weight/ft ²	Percentage	Weight/acre	Income
	Pounds	Weight	Pounds	at \$2.25/lb
0-5	0.0002	0.025%	8.6	
6-10	0.0039	0.503%	171.6	
11-15	0.0099	1.265%	431.9	
16-20	0.0207	2.639%	901.1	
21-25	0.0513	6.549%	2,236.2	Common propert
26-30	0.1541	19.656%	6,711.5	Common propert
31-35	0.2648	33.780%	11,534.1	Harvest income
36-37	0.0782	9.980%	3,407.7	
38 & above	0.2010	25.648%	8,757.5	\$19,704.37/Acre

FIRST HARVEST ESTMATE FOR ONE ACRE

Length class	Sample No.	Percent	Total Number/ s	q ft.	Number/acre
0-5	16	2.65%	3		112,461
6-10	26	4.31%	4		182,750
11-15	20	3.32%	3		140,577
16-20	29	4.81%	5		203,836
21-25	69	11.44%	11		484,990
26-30	114	18.91%	18		801,287
31-35	191	31.67%	31		1,342,508
36-37	55	9.12%	9		386,586
38 & above	83	13.76%	13	12 year old	583,393
Total	603		97		4,238,388
	2				
Length class	Weight/ft ²	Percentage	Weight/acre	li li	ncome
	Pounds	Weight	Pounds	at	\$2.25/lb
0-5	0.0001	0.008%	6.1		
6-10	0.0014	0.078%	60.9		
11-15	0.0044	0.246%	192.0		
16-20	0.0177	0.987%	768.9		
21-25	0.0848	4.744%	3,695.8	Comm	
26-30	0.2405	13.448%	10,476.9	Comm	ion property
31-35	0.6467	36.158%	28,170.1	Harv	est income
36-37	0.2454	13.721%	10,689.8		
38 & above	0.5475	30.611%	23,848.6	\$53	3,659.35/Acre

WHY PREDATOR NETTING?

Deploy or not to deploy?

- Farmers would prefer not to deploy netting if they had a choice
- Is predation a problem?
- Substrate suitability
- Security of the net
- Fouling could be a problem
- How long must the netting remain?
 - Clam life stage
 - Type of predation

From Brooks 2000

PREDATOR NET DEPLOYMENT

- Remove high spots
 <u>E.g. bolders</u>
- Cut netting to fit site
 - 15-20 ft segments
- Lay out net
- Fold over edges
- Dig trench around the margin
- Bury and anchor net edge

PREDATOR NETTING

- Netting negatively buoyant
- Mesh size 5/8-1"
- Must lay snug to the bottom
- Rock placed on top if necessary
- Secured during a tidal cycle, planted at next cycle

PREDATOR NETTING AFTER TWO YEARS

Predator netting may be removed within one year

SEEDING THE BEACH

- Hatchery seed
 - Transport restrictions
 - Hatchery practices that foster genetic diversity
- Cost \$7.50-9.50/1,000
- Count and inventory volumetrically

SEEDING THE BEACH On an incoming tide

RESEARCH

AGE AND GROWTH

RECRUITMENT is extremely variable between even adjacent plots

Upper plot									
Plot number	1- A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
Stocking number	90	30	60	30	90	60	90	60	30
Percent recruitment	91.38	60.00	57.89	92.59	60.71	17.50	30.19	33.33	23.33
Lower plot									
Plot number	1- A	1-B	1-C	-2-A	2-B	2-C	3- A	3-B	3-C
Stocking number	90	30	60	30	90	60	90	60	30
Percent recruitment	93.75	76.92	68.42	79.55	81.82	66.67	57.69	33.33	53.13

THE BOTTOM LINE Stocking and recruitment

	Recruitment								
<u>ס</u>		Low	Moderate	Heavy					
כ	30	S+ G+ \$L	S+ G+ \$L	S+ G+ \$M					
Ζ	60	S+ G+ \$M	S+ G+ \$M	S+ G+ \$H					
ン つ	90	S+ G+ \$M	S+ G+ \$H	S- G+ \$L					
う	S = S	Survival	L = - \$6,000 to	+\$7,000					
	G = 0	Growth	M = +\$10,000 to \$32,000						
	\$ = I	ncome	H = \$40,000 +						

Profitability - Red Low, Yellow Medium, Green High

AGE AND GROWTH

RECRUITMENT

Upper plot									
Plot number	1- A	1-B	1-C	2-A	2-B	2-C	3-A	3-B	3-C
Stocking number	90	30	60	30	90	60	90	60	30
Percent recruitment	91.38	60.00	57.89	92.59	60.71	17.50	30.19	33.33	23.33
Lower plot									
Plot number	1-A	1-B	1-C	-2-A	2-B	2-C	3-A	3-B	3-C
Stocking number	90	30	60	30	90	60	90	60	30
Percent recruitment	93.75	76.92	68.42	79.55	81.82	66.67	57.69	33.33	53.13

THE BOTTOM LINE

Recruitment						
	Low	Moderate	Heavy			
30	S+ G+ \$L	S+ G+ \$L	S+ G+ \$M			
60	S+ G+ \$M	S+ G+ \$M	S+G+\$H			
90	S+ G+ \$M	S+ G+ \$H	S- G+ \$L			

 wth
 \$6,000 to 10,000

 income
 \$40,000

WHAT WE LEARNED FROM GROWOUT RESEARCH

- High energy beaches
 - Poor survival and growth
- Predator nets do not appear to cause siltation
 - No significant change in before or after particle size
- Plant small seed (2-5 mm) in spring, nursery cultured seed (8-12 mm) in fall

WHAT WE LEARNED FROM GROWOUT RESEARCH

- Correlation between initial size distribution with recruitment and survival
- Pay attention to recruitment to maximize survival
- No difference between +1 and -1 tidal heights
- Relying on natural recruitment for sustained income is risky
- Overall the best results occurred at a standing stock density of approximately 60 clam seed/ft2

MAINTAINING THE FARM

- Regular inventories
 - Check for seed growth, survival, and natural recruitment
- Net repairs
- Fouling removal if necessary

SURVIVAL

Brooks 2000

HARVESTING

- Hand harvesting
- Raking to 6"
- Rack entire bed
- Replacing and smoothing substrate

QUESTIONS?

Contact me

- Ray RaLonde University of Alaska Sea
 Grant Program Marine Advisory Program
 - 907-274-9697
 - E-mail afrlr@uaa.alaska.edu