EXTENDING THE CATCH-MSY APPROACH USING AUXILIARY DATA: WESTERN PACIFIC EXPERIENCE

Marlowe Sabater*, Pierre Kleiber, Steve Martell, Gerard DiNardo

*Fishery Analyst, Western Pacific Fishery Management Council, Honolulu, Hawaii

Tools and Strategies for Assessment and Management of Data-Limited Fish Stock, 30th Lowell Wakefield Fisheries Symposium
May 15-25, 2015
Anchorage, Alaska
OUTLINE

• Background of the Western Pacific region
 • Fisheries
 • Data collection
 • Data limited situation

• Annual catch limit requirements
 • ABC control rules

• Shifting to model based approaches

• Biomass-augmented catch MSY approach

• Impact to regional fishery management
BACKGROUND OF THE WP REGION
Background of the WP region

- High species & fishery diversity
- Culturally important
- Low economic value
- Spatially variable
BACKGROUND OF THE WP REGION

- Commercial monthly fish report
- Aquarium Fish Report
- Aku Boat Trip Report
- Deep-sea Handline Trip Report
- Tuna Handline Trip Report
- Net, Trap, Dive Activity Report
- Bait Report
- Commercial Aquarium Marine Dealer Report
- Commercial non-Aquarium Marine Dealer Report
- Personal Aquarium Cash Sales Report
- Personal Sales Report

- Boat-based creel survey
- Shore-based creel survey
- Commercial Dealer reports
- Trans-shipment data
- Net-exemption data
- HMRFSS
Background of the WP region

- 1000+ species in the FEP = 115 ACLs
- 2 stock assessments
 - bottomfish
- Creative thinking
 - Quota to EFH proxies
- Uncertainties unquantifiable
ACL requirements – ABC Control Rules

Tier 1 Stock
Reliable estimates of OFL and uncertainty in OFL from statistically based stock assessments

Tier 2 Stock
OFL and uncertainty in OFL estimated from statistically based stock assessments, but are not considered reliable

Tier 3 Stock
OFL and uncertainty in OFL estimated from DCAC-SRA and through re-sampling and are not considered reliable

Tier 4 Stock
OFL and uncertainty in OFL are unknown; MSY is known but there is no current fishery for the stock

Tier 5 Stock
OFL and uncertainty in OFL are unknown; MSY is also unknown but there is catch data available for the stock

ABC = Pₚ*(OFL)

OFL = Bᵥ \left[\frac{F_{MSY}}{F_{MSY} + M}\right][1 - \exp(F_{MSY} + M)]

- OFL is estimated as
- Bᵥ is forecasted estimate of B in year y, the year for which the harvest limit is set;
- M is natural mortality coefficient;
- Pₚ is the P* **percentile of the probability distribution of OFL**;

- OFL is not necessarily normally distributed; and
- the shape and particularly the width of the distribution reflect the uncertainty in the estimate of OFL.

If median catch is > BMSY,
ABC = 1.0*median catch

If median catch is > MSST, but below BMSY,
ABC = 0.67* median catch

If median catch is < MSST (overfished),
ABC = 0.33* median catch

ABC = 0.70 F_{MSY} (91% of MSY)
Family	ACL (lbs)
Surgeons | 19,516
Snappers | 18,839
Groupers | 5,600
Mollusks | 16,694
Jacks | 9,460
Emperors | 7,350
Parrots | 8,145

Annual Catch (lbs)

- **Parrotfish Catch**: y = 0.7529x + 20.302, R² = 0.5695
- **Geometric Mean**: y = 0.0011x + 16.925, R² = 0.024

Catch vs. Biomass

- **Catch**: Graph showing the catch for 2009 and 2011.
- **Biomass**: Graph showing biomass for 2009 and 2011.

Scaridae Boat Catch

- Graph showing scaridae boat catches with linear regression equation and R² value.

Scaridae Shore Catch

- Graph showing scaridae shore catches with linear regression equation and R² value.
SHIFTING TO MODEL BASED APPROACHES

A simple method for estimating MSY from catch and resilience

Steven Martell¹ & Rainer Froese²

Estimating Surplus Production and Maximum Sustainable Yield from Biomass Data when Catch and Effort Time Series are not Available

S. GARCIA, P. SPARRE and J. CSIRKE

Depletion-corrected average catch: a simple formula for estimating sustainable yields in data-poor situations

Alec D. MacCall

Depletion-Based Stock Reduction Analysis: A catch-based method for determining sustainable yields for data-poor fish stocks

E.J. Dick*, Alec D. MacCall
Biomass-Augmented Catch-MSY

<table>
<thead>
<tr>
<th>Model</th>
<th>Catch history</th>
<th>Biomass</th>
<th>Est. M</th>
<th>R & K</th>
<th>Estimate depletion</th>
<th>Result</th>
<th>Probability distribution</th>
<th>ABC C-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>75%ile creel</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“ave catch”</td>
<td>N</td>
<td>1X</td>
</tr>
<tr>
<td>75%ile updated</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“ave catch”</td>
<td>N</td>
<td>1X</td>
</tr>
<tr>
<td>75%ile cre+com</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>“ave catch”</td>
<td>N</td>
<td>1X</td>
</tr>
<tr>
<td>S-F model</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>MSY</td>
<td>N</td>
<td>?</td>
</tr>
<tr>
<td>Catch-MSY</td>
<td>X</td>
<td>(derived)</td>
<td>X</td>
<td></td>
<td></td>
<td>MSY</td>
<td>Y</td>
<td>P*</td>
</tr>
<tr>
<td>DCAC</td>
<td>X</td>
<td>(derived)</td>
<td>X</td>
<td></td>
<td></td>
<td>Sustain. yield</td>
<td>Y</td>
<td>P*</td>
</tr>
<tr>
<td>DBSRA</td>
<td>X</td>
<td>(derived)</td>
<td>X</td>
<td></td>
<td></td>
<td>Sustain. yield</td>
<td>Y</td>
<td>P*</td>
</tr>
</tbody>
</table>
SHIFTING TO MODEL BASED APPROACHES

- Hardness
- Slope
- Complexity
- Depth

AREA & UNITS: RANDOM REA SURVEY

- RANDOMIZED HARD-BOTTOM LOCATION WITHIN 0-30 M DEPTHS
- PAIRED 15-M-DIAMETER CYLINDERS
- PHOTOGRAPHS OF BENTHOS TAKEN ALONG TRANSECTS
- STATIONARY-POINT-COUNT SURVEYS OF FISHES
Shifting to Model Based Approaches

<table>
<thead>
<tr>
<th>Island</th>
<th>(n)</th>
<th>Area 0-30 m hardbottom (Ha)</th>
<th>Emperor</th>
<th>Goatfish</th>
<th>Grouper</th>
<th>Jack</th>
<th>Parrotfish¹</th>
<th>Reef Shark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutuila</td>
<td>171</td>
<td>4,888</td>
<td>42,513</td>
<td>20,678</td>
<td>43,491</td>
<td>25,614</td>
<td>271,926</td>
<td>7,111</td>
</tr>
<tr>
<td>Tau</td>
<td>36</td>
<td>1,003</td>
<td>8,575</td>
<td>3,191</td>
<td>27,534</td>
<td>5,399</td>
<td>60,795</td>
<td>2,929</td>
</tr>
<tr>
<td>Ofu & Olosega</td>
<td>43</td>
<td>1,055</td>
<td>8,339</td>
<td>2,674</td>
<td>25,310</td>
<td>9,304</td>
<td>86,402</td>
<td>10,354</td>
</tr>
<tr>
<td>Rose</td>
<td>61</td>
<td>558</td>
<td>4,087</td>
<td>2,411</td>
<td>10,307</td>
<td>8,597</td>
<td>13,142</td>
<td>14,682</td>
</tr>
<tr>
<td>Swains</td>
<td>41</td>
<td>281</td>
<td>1,055</td>
<td>293</td>
<td>7,580</td>
<td>10,033</td>
<td>5,450</td>
<td>4,154</td>
</tr>
<tr>
<td>TOTAL</td>
<td>352</td>
<td>7,785</td>
<td>64,569</td>
<td>29,246</td>
<td>114,222</td>
<td>58,947</td>
<td>437,716</td>
<td>39,231</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Island</th>
<th>Rudderfish</th>
<th>Snapper</th>
<th>Squirrel/Soldierfish</th>
<th>Wrasse¹</th>
<th>Surgeonfish</th>
<th>Others</th>
<th>Total Fish Bio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutuila</td>
<td>2,011</td>
<td>62,463</td>
<td>14,870</td>
<td>53,262</td>
<td>497,952</td>
<td>577,177</td>
<td>1,619,068</td>
</tr>
<tr>
<td>Tau</td>
<td>4,705</td>
<td>29,547</td>
<td>11,921</td>
<td>17,378</td>
<td>111,952</td>
<td>90,894</td>
<td>374,821</td>
</tr>
<tr>
<td>Ofu & Olosega</td>
<td>1,945</td>
<td>39,932</td>
<td>10,451</td>
<td>13,375</td>
<td>154,103</td>
<td>103,852</td>
<td>466,038</td>
</tr>
<tr>
<td>Rose</td>
<td>29</td>
<td>12,534</td>
<td>6,262</td>
<td>10,167</td>
<td>24,203</td>
<td>21,669</td>
<td>128,091</td>
</tr>
<tr>
<td>Swains</td>
<td>26</td>
<td>9,008</td>
<td>2,218</td>
<td>3,843</td>
<td>18,870</td>
<td>65,524</td>
<td>128,056</td>
</tr>
<tr>
<td>TOTAL</td>
<td>8,716</td>
<td>153,484</td>
<td>45,721</td>
<td>98,025</td>
<td>807,079</td>
<td>859,116</td>
<td>2,716,074</td>
</tr>
</tbody>
</table>

SOURCE: Williams 2010. US Pacific reef fish biomass estimates based on visual survey data. PIFSC Internal Report IR-10-024
Biomass-augmented Catch-MSY

SOURCE: Martell and Froese 2012

Schaefer Model

\[b_{t+1} = \left(b_t + rb_t \left(1 - \frac{b_t}{k}\right) - c_t \right) e^{x_t} \]

Biomass trajectories (green lines) depend on parameters

Task is to find workable combinations of \(r \) and \(k \) values which are chosen from reasonable priors and can accommodate the catch series while keeping biomass within set boundaries

These combinations give a list of possible MSY values from which we get a mean or median and distribution for MSY

Schaefer Model:

- \(b_t \) = biomass in year \(t \)
- \(b_0 \) = biomass at start
- \(c_t \) = catch in year \(t \)

\[\text{MSY} = \frac{rk}{4} \]
Biomass-augmented Catch-MSY

1. Read input data:
 - catch series
 - biomass series with CVs
 - resilience
 - various ranges
 - parameters σ and ρ

2. $\lambda = \text{biomass to } k \text{ ratio: } (\lambda_i = b_i / k)$
 - determine range of values for λ_0 and λ_n
 - define a λ_0 vector spread over λ_0 range

3. Chose 30000 r_i from r-range
 Chose 30000 k_i from k-range

4. Loop over i, (r_i, k_i pairs)

5. Set r_i, k_i pair to FAIL

6. Loop over j, (λ vector)

7. Calc. b_i from $r_i, k_i, b_0 = \lambda_j \times k_i, \sigma$

10. Reset r, k, pair to PASS

8. Any b_i/k out of range?
 Yes
 Any b_i out of range?
 Yes

9. Any b_i out of range?
 Yes

12. 1st time?
 Yes

13. Refine r & k ranges
 Yes
 Refine r & k ranges
 No
 Exit

Calc. MSY vector from passing r_i, k_i pairs

$Y_i = r_i \times k_i / 4$

New r-range = \{min(r^*) \cdots 1.2 x max(r^*)\}

$x_a = \min[k^* | r^* < 1.1 \times \min(\text{first } r \text{ range})]$

$x_b = \max[k^*_i Y(r^*_i, k^*_i) < \exp(\log(Y^*))]$

New k-range = \{0.9 x min(k^*) \cdots min(x_a, x_b)\}

Exit
BIOMASS-AUGMENTED CATCH-MSY

1. Read input data:
 - catch series
 - biomass series with CVs
 - resilience
 - various ranges
 - parameters σ and ρ

2. $\lambda = \text{biomass to } k \text{ ratio: } (\lambda_t = b_t / k)$
 - determine range of values for λ_0 and λ_n
 - define a λ_0 vector spread over λ_0 range

3. chose 30000 r_i from r-range
 - chose 30000 k_i from k-range

4. loop over i, (r_i, k_i) pairs

5. set r_i, k_i pair to FAIL

6. loop over j, (\lambda vector)

7. calc. b_t from $r_i, k_i, b_0 = \lambda_i \times k_i$, σ

8. any b_i/k out of range?

9. any b_i out of range?

10. reset r, k pair to PASS

11. calc. MSY vector from passing r_i, k_i pairs

12. 1st time?

13. refine r & k ranges

 - yes
 - loop over i, (r_i, k_i) pairs
 - set r_i, k_i pair to FAIL
 - loop over j, (\lambda vector)
 - calc. b_t from $r_i, k_i, b_0 = \lambda_i \times k_i$, σ
 - any b_i/k out of range?
 - any b_i out of range?

 - yes
 - reset r, k pair to PASS
 - exit

 - no
 - $Y_i^* = r_i^* \times k_i^*/4$

 - new-r-range = $\{\min(r^*) \ldots 1.2 \times \max(r^*)\}$

 - $x_a = \min[k^* \mid r^* < 1.1 \times \min(\text{first } r \text{ range})]$

 - $x_b = \max[k_i^* \mid Y(r_i^*, k_i^*) < \exp(\log(Y^*))]$

 - new-k-range = $\{0.9 \times \min(k^*) \ldots \min(x_a, x_b)\}$

 - yes
 - $r^* = \text{all good } r$-values
 - $k^* = \text{all good } k$-values

 - loop over i, (r_i, k_i) pairs
 - set r_i, k_i pair to FAIL
 - loop over j, (\lambda vector)
 - calc. b_t from $r_i, k_i, b_0 = \lambda_i \times k_i$, σ

 - any b_i/k out of range?

 - any b_i out of range?

 - yes
 - reset r, k pair to PASS
 - exit

 - no
 - 13

13. exit
BIOMASS-AUGMENTED CATCH-MSY
Biomass-augmented Catch-MSY

Hawai’i, MSY distributions
BIOMASS-AUGMENTED CATCH-MSY

Hawaii
IMPLICATION TO FISHERY MANAGEMENT

- Based on the probability distribution around the mean MSY estimate
- Quantiles of the one tail distribution
- 5% increment
- P* analysis
Implication to Fishery Management

<table>
<thead>
<tr>
<th>Tier 1 Stock</th>
<th>Tier 2 Stock</th>
<th>Tier 3 Stock</th>
<th>Tier 4 Stock</th>
<th>Tier 5 Stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliable estimates of OFL and uncertainty in OFL from statistically based stock assessments</td>
<td>OFL and uncertainty in OFL estimated from statistically based stock assessments, but are not considered reliable</td>
<td>OFL and uncertainty in OFL estimated from DCAC-SRA and through re-sampling and are not considered reliable</td>
<td>OFL and uncertainty in OFL are unknown; MSY is known but there is no current fishery for the stock</td>
<td>OFL and uncertainty in OFL are unknown; MSY is also unknown but there is catch data available for the stock</td>
</tr>
</tbody>
</table>

ABC = PP*(OFL)

- OFL is estimated as
- B_y is forecasted estimate of B in year y, the year for which the harvest limit is set;
- M is natural mortality coefficient;
- P_p is the P^* percentile of the probability distribution of OFL;

- OFL is not necessarily normally distributed; and
- the shape and particularly the width of the distribution reflect the uncertainty in the estimate of OFL.

OFL = $B_y \left[\frac{F_{MSY}}{F_{MSY} + M} \right] [1 - \exp(F_{MSY} + M)]

If median catch is $> BMSY$, **ABC = 1.0*median catch**

If median catch is $> MSST$, but below $BMSY$, **ABC = 0.67* median catch**

If median catch is $< MSST$ (overfished), **ABC = 0.33* median catch**
Implication to Fishery Management

- OFL can be identified (MSY as a proxy)
- Uncertainties can be quantified
- Risk can be determined
- \(P^* \) analysis dimensions
 - Model information
 - Uncertainty characterization
 - Stock status
 - Productivity-susceptibility
- Multi-year specification

\(P^* = 50\% \)
Implication to fishery management

A. Group 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

<table>
<thead>
<tr>
<th>Group</th>
<th>5%</th>
<th>10%</th>
<th>15%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>35%</th>
<th>40%</th>
<th>45%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. crumenopthalmus</td>
<td>791.8</td>
<td>819.6</td>
<td>843.1</td>
<td>861.9</td>
<td>879.2</td>
<td>896.0</td>
<td>913.4</td>
<td>931.0</td>
<td>949.7</td>
<td>969.4</td>
</tr>
<tr>
<td>D. macarellus</td>
<td>335.6</td>
<td>343.9</td>
<td>351.3</td>
<td>358.4</td>
<td>365.5</td>
<td>372.8</td>
<td>380.3</td>
<td>388.4</td>
<td>397.3</td>
<td>406.5</td>
</tr>
<tr>
<td>Acanthuridae</td>
<td>145.0</td>
<td>160.9</td>
<td>175.6</td>
<td>214.9</td>
<td>228.4</td>
<td>238.9</td>
<td>252.8</td>
<td>262.9</td>
<td>274.6</td>
<td>295.5</td>
</tr>
<tr>
<td>Carangidaegidae</td>
<td>111.8</td>
<td>118.4</td>
<td>124.7</td>
<td>130.4</td>
<td>136.3</td>
<td>142.2</td>
<td>148.7</td>
<td>155.4</td>
<td>162.5</td>
<td>170.1</td>
</tr>
<tr>
<td>Charcarhinidae</td>
<td>7.6</td>
<td>8.60</td>
<td>9.3</td>
<td>9.8</td>
<td>10.2</td>
<td>10.6</td>
<td>10.9</td>
<td>11.2</td>
<td>11.4</td>
<td>11.7</td>
</tr>
<tr>
<td>Holocentridae</td>
<td>128.0</td>
<td>129.0</td>
<td>130.3</td>
<td>131.1</td>
<td>131.7</td>
<td>133.2</td>
<td>134.6</td>
<td>135.9</td>
<td>137.1</td>
<td>138.9</td>
</tr>
<tr>
<td>Kyphosidae</td>
<td>72.9</td>
<td>73.7</td>
<td>74.6</td>
<td>75.5</td>
<td>77.0</td>
<td>78.4</td>
<td>79.4</td>
<td>80.5</td>
<td>81.6</td>
<td>83.6</td>
</tr>
<tr>
<td>Labridae</td>
<td>152.9</td>
<td>155.1</td>
<td>157.6</td>
<td>160.1</td>
<td>161.7</td>
<td>162.9</td>
<td>163.9</td>
<td>165.8</td>
<td>168.1</td>
<td>170.3</td>
</tr>
<tr>
<td>Lethrinidae</td>
<td>26.0</td>
<td>26.60</td>
<td>27.0</td>
<td>27.3</td>
<td>27.6</td>
<td>28.1</td>
<td>28.5</td>
<td>28.7</td>
<td>29.2</td>
<td>29.7</td>
</tr>
<tr>
<td>Lutjanidae</td>
<td>229.9</td>
<td>232.8</td>
<td>235.8</td>
<td>238.7</td>
<td>244.9</td>
<td>248.8</td>
<td>252.7</td>
<td>257.6</td>
<td>261.9</td>
<td>265.5</td>
</tr>
<tr>
<td>Mollusk</td>
<td>26.0</td>
<td>27.80</td>
<td>29.1</td>
<td>30.4</td>
<td>31.7</td>
<td>33.0</td>
<td>34.5</td>
<td>36.1</td>
<td>37.8</td>
<td>39.6</td>
</tr>
<tr>
<td>Mugilidae</td>
<td>14.8</td>
<td>15.90</td>
<td>16.8</td>
<td>17.5</td>
<td>18.2</td>
<td>18.8</td>
<td>19.3</td>
<td>20.0</td>
<td>20.7</td>
<td>21.5</td>
</tr>
<tr>
<td>Mullidae</td>
<td>101.3</td>
<td>111.8</td>
<td>117.8</td>
<td>123.1</td>
<td>129.4</td>
<td>135.4</td>
<td>140.9</td>
<td>146.6</td>
<td>152.9</td>
<td>159.5</td>
</tr>
<tr>
<td>Scaridae</td>
<td>170.9</td>
<td>174.1</td>
<td>177.1</td>
<td>179.7</td>
<td>180.8</td>
<td>186.2</td>
<td>190.5</td>
<td>198.4</td>
<td>203.5</td>
<td>212.2</td>
</tr>
<tr>
<td>Serranidae</td>
<td>81.6</td>
<td>82.60</td>
<td>85.3</td>
<td>87.5</td>
<td>89.1</td>
<td>90.8</td>
<td>92.8</td>
<td>95.2</td>
<td>97.7</td>
<td>100.7</td>
</tr>
<tr>
<td>Other CREMUS</td>
<td>361.2</td>
<td>366.7</td>
<td>372.4</td>
<td>378.2</td>
<td>385.2</td>
<td>391.7</td>
<td>398.1</td>
<td>403.4</td>
<td>409.4</td>
<td>419.5</td>
</tr>
<tr>
<td>Spiny lobster</td>
<td>114.8</td>
<td>122.5</td>
<td>127.8</td>
<td>131.7</td>
<td>135.3</td>
<td>139.0</td>
<td>142.4</td>
<td>145.9</td>
<td>149.0</td>
<td>152.3</td>
</tr>
<tr>
<td>CRE-crustaceans</td>
<td>23.8</td>
<td>26.30</td>
<td>28.2</td>
<td>29.9</td>
<td>31.5</td>
<td>32.9</td>
<td>34.3</td>
<td>35.5</td>
<td>36.8</td>
<td>38.0</td>
</tr>
</tbody>
</table>
Next Steps

- CIE review of the Biomass-augmented Catch-MSY method
- Develop a set of integrated extensions to the Catch-MSY method to better inform current estimates of depletion.
- Web-based interface for SSC and Council members to interact with [SHINY App].
- Training & application
MAHALO NUI

- Dr. Pierre Kleiber – WPFMC SSC member
- Dr. Steve Martell – IPHC
- Dr. Gerard DiNardo – NMFS-SWFSC

- American Samoa – Dept. Marine & Wildlife Resources
- Guam – Division of Aquatic & Wildlife Resources
- Hawaii – Division of Aquatic Resources
- CNMI – Division of Fish & Wildlife

- NOAA-Coral Reef Conservation Program
“Errors using inadequate data are much less than those using no data at all” --- Charles Babbage 1799-1871 – invented the first mechanical computer