Should we Model or Measure Fish Growth in Stock Assessments?

Peter Kuriyama, Felipe Hurtado-Ferro, Kotaro Ono, Allan Hicks, Ian Taylor, Kelli Johnson, Cole Monnahan, Christine Stawitz, Sean Anderson, Merrill Rudd, Roberto Licandeo, Juan Valero
Outline

• Growth
• Simulating growth
• Case Study: Pacific Hake
• Extensions
von Bertalanffy Growth

$L(a) = L_{inf} \left(1 - e^{-k(a-t_0)} \right)$
Three Ways to Handle Growth in Assessments

1. Constant Growth

2. Time-Varying Growth

3. Measure Weight-at-age
Three ways to Handle Growth in Assessments

1. Constant Growth
Time-varying growth

• **External**
 – Environment
 – Competition
 – Food availability

• **Internal**
 – Stress
 – Disease
 – Reproduction
Three ways to Handle Growth in Assessments

2. Time-Varying Growth

Year 1

Year 2

Year 3
Three ways to Handle Growth in Assessments

3. Measure Weight-at-age

Year	Age	0.02	0.13	0.28	0.36	0.36	0.51	0.51	0.54	0.54	0.67	0.67	0.71	0.71	0.73	0.73	0.75	0.75	0.79	0.79	0.83	0.83	0.86	0.86	0.90	0.90	0.99	0.99	1.01	1.01	1.03	1.03	1.05	1.05			
0.01	0.02	0.03	0.04	0.05	0.06	0.06	0.07	0.07	0.08	0.08	0.09	0.09	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10

Figure 17: Empirical weight-at-age (kg) used in the assessment. Numbers shown in bold were interpolated or extrapolated from adjacent years.
Figure 17: Empirical weight-at-age (kg) used in the assessment. Numbers shown in bold were interpolated or extrapolated from adjacent years.
Figure 17: Empirical weight-at-age (kg) used in the assessment. Numbers shown in bold were interpolated or extrapolated from adjacent years.

Compare Approaches

- **Biomass**
- **Weight**
- **Length**
- **Age**

Age + Length

Weight-at-age
Outline

• Growth

• Simulating growth

• Case Study: Pacific Hake

• Extensions
How to generate time-varying growth?

\[L(a) = L_{\text{inf}} \left(1 - e^{-k(a-t_0)} \right) \]
\[L(\alpha) = L_{inf} \left(1 - e^{-k(\alpha-t_0)} \right) \]
Positive and Negative - k

\[L(a) = L_{inf} \left(1 - e^{-k(a-t_0)} \right) \]
\[L(\alpha) = L_{inf} \left(1 - e^{-k(\alpha - t_0)} \right) \]
\(L(\alpha) = L_{inf} \left(1 - e^{-k(\alpha - t_0)} \right) \)
\[L(a) = L_{inf} \left(1 - e^{-k(a-t_0)} \right) \]
\[L(\alpha) = L_{\text{inf}} (1 - e^{-k(\alpha - t_0)}) \]
Outline

• Growth
• Simulating growth
• Case Study: Pacific Hake
• Extensions
Simulation

- Pacific Hake
- Time-varying growth
 - L_{∞}: Positive and Negative
- Compare
 - age + length
 - weight-at-age
Simulation Approach

1. Simulate The Truth
2. “Collect” Data
3. Estimate
4. Compare to The Truth

Test:
Sampling
Statistical method
b.

Fishery

Data-rich late-survey
Data-rich
Data-unrealistic

Survey

○ 35
○ 100
☐ 500
Results – Realistic Data

- Time-invariant growth
 - Age + Length better

![Graphs showing relative error (SSB) over years for Age + Length and Weight-at-age, with MARE values of 3 and 7 respectively.](image-url)
Results

• Time-invariant growth
 – Age + Length better

• Time-varying growth
 – Weight-at-age better
Results – Realistic Data

- Time-varying growth
 - Weight-at-age better
Results

• Time-invariant growth
 – Age + Length better

• Time-varying growth
 – Weight-at-age better

• Weight-at-age breaks down with less data
Results – Realistic to Less Realistic

- Breakdown with less data

![Weight-at-age](MARE=7)

![Late Survey](MARE=13)
Does the Simulation Work?

• With Unrealistic Data
 – Weight-at-age
 – Time-varying growth
Future Work

• Different life histories
• Data-limited scenarios
 – Methods of filling missing values

Caveats

• Constant length-weight relationship
• Practical Difficulties
 – Hard to age, weigh
Conclusions

• Time-invariant growth
 – Age + Length better
• Time-varying growth
 – Weight-at-age better
• Weight-at-age breaks down with less data

Thanks
• Ian Stewart, Mark Maunder, Andre Punt
• CAPAM
• Alaska Sea Grant
github.com/ss3sim/Empirical
b. Fishery
- Data-rich late-survey
- Data-rich
- Data-unrealistic

Survey
- 35
- 100
- 500
How to sample weights?

For each survey or fishery year, the true age distribution is taken.
Sample True Age

True Age Distribution

Multinomial
– N samples
Convert Age to Length

Multinomial sample – sample size N

Length-at-age

\[L(a) = L_{\text{inf}} \left(1 - e^{-k(a-t_0)}\right) \]
Convert Length to Weight

Length-at-age

Weight-at-age

\[W = aL^b \]
Dealing with Missing Years

Year 1

Year 2

Year 3

Year 7
Large Scale of Assessments

1. Constant Growth

- Reproduction
- Maturation
- Mortality