Assessment & Management of Fisheries Based on Mean-Size Statistics: an expansive methodology

John M. Hoenig, Amy Y.-H. Then, & Todd Gedamke, Meaghan Bryan, Jon Brodziak, Quang C. Huynh, John F. Walter and Clay Porch
More Fishing \rightarrow Less Older Fish
More Fishing \rightarrow Less Large Fish

Pauly (1984 p. 71) after Powell (1979)
What to do with length composition data?

- Convert to ages, then analyze age data

Mixture analysis

Cohort slicing (Ailloud et al. 2015)
What to do with length composition data?

- Convert to ages, then analyze age data

Relative age $t' = -\log(1 - \frac{L}{L_{\text{inf}}})$

banded grouper (*Epinephelus sexfasciatus*)

Pauly (1984)
What to do with length composition data?

- Convert to ages, then analyze age data
- Analyze multiple years simultaneously in integrated stock assessment model
What to do with length composition data?

- Convert to ages, then analyze age data
- Analyze multiple years simultaneously in integrated stock assessment model

These approaches look at SHAPE of the length frequency distribution
Alternative:

Look at (just) a summary, the mean length
Beverton-Holt mean length mortality estimator

\[
\bar{L} = \frac{\int_{t_c}^{\infty} N_t L_t \, dt}{\int_{t_c}^{\infty} N_t \, dt}
\]

\[
\bar{L} = L_\infty \left(1 - \frac{Z}{Z + K} \frac{L_\infty - L_c}{L_\infty}\right)
\]

growth rate \quad \text{maximum length}

total mortality

\[
Z = \frac{K(L_\infty - \bar{L})}{\bar{L} - L_c}
\]

mean length

length where all animals fully vulnerable
Tradeoffs

<table>
<thead>
<tr>
<th>More</th>
<th>Less</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assumptions,</td>
<td>Data & poorer quality,</td>
</tr>
<tr>
<td>Sophistication,</td>
<td>Complex,</td>
</tr>
<tr>
<td>Detail</td>
<td>Sensitive to assumptions</td>
</tr>
</tbody>
</table>
Desiderata for mean-length-based methods

• Relaxing assumptions

• Diagnostics

• Incorporating more types of data

• Bridges to (more) data-rich methods
Desiderata for mean-length-based methods

• Relaxing assumptions

• Diagnostics

• Incorporating more types of data

• Bridges to (more) data-rich methods

Assumptions

• Growth known
• No variability in size-at-age
• Z constant w/age
• Z constant w/time
• constant recruitment
Desiderata for mean-length-based methods

- Relaxing assumptions
- Diagnostics
- Incorporating more types of data
- Bridges to (more) data-rich methods

Data Types
- mean length
- catch rate (cpue)
- recruit index (cpue by size)
- effort
- catch & cpue
- other species
Beverton-Holt mean length mortality estimator

5 assumptions:

1. Asymptotic growth, K and L_∞ known & constant over time
2. No individual variability in growth
3. Mortality constant with age (Selectivity, M)
4. Mortality constant over time \rightarrow Population in equilibrium (mean length reflects mortality)
5. ‘Constant’ & continuous recruitment over time

\[Z = \frac{K(L_\infty - \bar{L})}{\bar{L} - L_c} \]
Growth known: What if life history parameters questionable??

Queen Snapper
(hook and line in Puerto Rico)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Lower bound</th>
<th>Base</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_c</td>
<td>335mm</td>
<td>365mm</td>
<td>465mm</td>
</tr>
<tr>
<td>VBK</td>
<td>0.25</td>
<td>0.45</td>
<td>0.65</td>
</tr>
<tr>
<td>L_∞</td>
<td>846mm</td>
<td>888mm</td>
<td>906mm</td>
</tr>
</tbody>
</table>
Using Proportional Change in Mortality

Proportional Change in $Z = \frac{Z_2 - Z_1}{Z_1}$

$Z_1 = \frac{K(L_\infty - \bar{L}_1)}{\bar{L}_1 - L_c}$

$Z_2 = \frac{K(L_\infty - \bar{L}_2)}{\bar{L}_2 - L_c}$

$Z_{prop.\ change} = \frac{\frac{K(L_\infty - \bar{L}_2)}{\bar{L}_2 - L_c} - \frac{K(L_\infty - \bar{L}_1)}{\bar{L}_1 - L_c}}{\frac{K(L_\infty - \bar{L}_1)}{\bar{L}_1 - L_c}}$
5 assumptions:

1. Asymptotic growth, K and L_∞ known & constant over time

2. No individual variability in growth

3. Mortality constant with age (Selectivity, M)

4. Mortality constant over time \rightarrow Population in equilibrium (mean length reflects mortality)

5. ‘Constant’ & continuous recruitment over time

Beverton-Holt mean length mortality estimator

$$Z = \frac{K(L_\infty - \bar{L})}{\bar{L} - L_c}$$
Ehrhardt-Ault (EA) mortality estimator

\[
\bar{L} = \frac{\int_{t_c}^{t_\lambda} N_t L_t \, dt}{\int_{t_c}^{t_\lambda} N_t \, dt}
\]
Chapter 2

EA: Varying imposed L_λ

Age:
- 'Actual' t_λ

Graph:
- **Length** vs **Age**
- Parameters: Z, K, σ, t_λ
Chapter 2

Introduction

- **Method**
- **Results**
- **Conclusions**

EA: Varying imposed \(L_\lambda \)

Age:
- ‘Actual’ \(t_\lambda \)

‘Actual’ \(L_\lambda \)

Length vs. Age

- \(Z, K, \sigma, t_\lambda \)
Chapter 2

Introduction

- **Method**
- **Results**
- **Conclusions**

Simulation approach

- **EA**: Varying imposed L_λ

Age: 'Actual' t_λ

Undertruncation

- 'Actual' L_λ

Overtruncation

- Z, K, σ, t_λ
Data analyst specifies a t_λ which corresponds to an L_λ

varying imposed L_λ, Z & K ($\sigma = 7$)

$Z = 0.1$ $Z = 0.25$ $Z = 0.5$ $Z = 1.0$

$K = 0.1, 0.4, 0.7, 1.0$

A, B, C, D
Take Home Message:

growth variability not a problem for BH;
Truncation \rightarrow overestimate of Z

EA Model:
- complex behavior, unpredictable bias
- RMSE much better or much worse than BH, depending on $Z, \sigma, & L_\lambda$
- Use not advised (Then et al. in revision)
Dome-shaped selectivity

no general solution

- Live with positive bias
- Evaluate sensitivity to suspected selectivity pattern
- Treat as Index of Z & Look at relative change in Z
- Incorporate selectivity into the model
Beaveron-Holt mean length mortality estimator

5 assumptions:

1. Asymptotic growth, K and L_∞ known & constant over time
2. No individual variability in growth
3. Mortality constant with age (eg. Selectivity, M)
4. Mortality constant over time \rightarrow Population in equilibrium (mean length reflects mortality)
5. ‘Constant’ & continuous recruitment over time

$$Z = \frac{K(L_\infty - \bar{L})}{\bar{L} - L_c}$$
First expansion: multiple years

Change in Z causes *gradual* (transitional) change in mean length to new equilibrium value.
The derivation

\[\overline{L}_d = \frac{\int_{t_c}^{g} N_o \exp(-Z_2(t-t_c)) L_z dt + \int_{t_c}^{g} N_o \exp(-Z_2 t) \exp(-Z_1(t-g)) L_z dt}{\int_{t_c}^{g} N_o \exp(-Z_2(t-t_c)) dt + \int_{g}^{\infty} N_o \exp(-Z_2 t) \exp(-Z_1(t-g)) dt} \]

In English:

Mean Length =

\[\frac{\text{SUM # of younger animals at each age (Z}_2 \text{ only)} \cdot \text{Length at age}}{\text{SUM # of older animals at each age (both Z}_1 \text{ and Z}_2 \text{)} \cdot \text{Length at age}} + \frac{\text{SUM # of younger animals at each age (Z}_2 \text{ only)} \cdot \text{Length at age}}{\text{SUM # of older animals at each age (both Z}_1 \text{ and Z}_2 \text{)}} \]
Simplified Equation (at least relatively)

\[
\bar{L}_d = L_\infty - \frac{Z_1 Z_2 (L_\infty - L_c) \{Z_1 + K + (Z_2 - Z_1) \exp\left(-(Z_2 + K) d \right) \}}{(Z_1 + K)(Z_2 + K)(Z_1 + (Z_2 - Z_1) \exp\left(-Z_2 d \right))}
\]

\(d = \text{number of years since change in mortality}\)
Maximum likelihood estimation

Means distributed normally (Central Limit Theorem)

\[
\ln (\Lambda) \propto -n \cdot (\ln \sigma) - \frac{1}{2\sigma^2} \cdot \sum_{y=1}^{n} m_y \cdot [\bar{L}_y - L_{\text{pred},y}]^2
\]
Goosefish (*Lophius americanus*)
Gedamke and Hoenig (2006)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Length (cm)</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
</tr>
</tbody>
</table>

Goosefish (*Lophius americanus*)
Gedamke and Hoenig (2006)

Diagnostic – pattern to residuals

\[Z_1 = 0.15 \]
\[Z_2 = 0.48 \]
Goosefish (*Lophius americanus*)
Gedamke and Hoenig (2006)
Barndoor skate NMFS survey

Barndoor skate (Dipturus laevis) Gedamke et al. (2008)
2nd expansion: Using an index of recruitment

Equate observed mean length with predicted; predicted computed as sum (not integral) and constant recruitment replaced by year-specific index.
What if you don’t have an index of recruitment?

Overestimate Z when recruitment is increasing & underestimate when declining
3rd expansion: Incorporating effort data THoG model (Then, Hoenig, Gedamke)

Simply replace Z by $q f_t + M$ in “simplified equation”

same likelihood function

$$
\sum (\bar{L}_{\text{pred}} - \bar{L}_{\text{obs}})^2
$$

Estimate catchability, q, & natural mortality, M → year-specific fishing & total mortality rates, F & Z
Example: $Z_1 = 0.6$, $Z_2 = 1.0$, $K = 0.4$, $L_{\text{inf}} = 100$

Base Case: q & M estimates

\[r^2 = -0.892 \]
\[r^2 = -0.887 \]
\[r^2 = -0.892 \]

σ' depends on sample size & recruitment variability
Base Case: Z_1 & Z_2 estimates & ratios

$\sigma' = 1$

$\sigma' = 3$

$\sigma' = 5$

true $Z_2/Z_1 = 1.67$
4th expansion – use total catch & cpue data

Then-Hoenig-Gedamke (THoG)

effort = \(f = \text{catch/\text{cpue}} \)

\[Z = q \text{ catch/\text{cpue}} + M \]

abundance = \(\text{cpue}/q \)

surplus production model

MSY, \(B_{\text{MSY}} \), \(F_{\text{MSY}} \), \(F_t \), \(B_t \)
mortality increases \rightarrow fewer fish

Ratio of observed CPUE inverse to relative change in Z

$$\frac{CPUE_2}{CPUE_1} = \frac{Z_1}{Z_2}$$

cpue \rightarrow same transitional behavior as mean length

(denominator in derivation of “simplified equation”)
Fit model to data

- Estimate total mortality in stanzas
- Specify number of changes in mortality
- Obtain maximum likelihood estimates of \(Z \), year(s) of change:

\[
\log \Lambda = \log \Lambda_L + \log \Lambda_{CPUE}
\]

both parts have \(\Sigma(\text{observed} - \text{predicted})^2 \)

- use AIC to find the best fitting model.
\[
\frac{cpue_2}{cpue_1} = \frac{Z_1}{Z_2} \quad \text{in equilibrium}
\]

\(cpue\) constrains magnitude of change in \(Z\), not absolute levels
Effects of recruitment

• Change in recruitment changes mean length & cpue

Expect:

Negative correlation of residuals & long runs
6th expansion – multi-species approach

- Multiple species \rightarrow information on shared parameters
- Species ‘complexes’ subject to similar effort patterns

Example: 4 species w/ 3 changes in mortality

- Each species individually \rightarrow 32 parameters
- Common change years \rightarrow 23 parameters
- Common change years & proportional changes in F \rightarrow 14 parameters
Multispecies w/ Common Proportional Change in F

Common Year of Change = 1998.03
Common Proportional change in F = 0.57
Derivation of overfishing limit (OFL)

(1) \[OFL = F_{MSY} N_{current} \]

- \(F_{MSY} \) & \(N_{current} \) difficult to obtain
- If recent (reference) average catch & \(F \) known:

(2) \[C_{ref} = F_{ref} N_{ref} \rightarrow N_{ref} = \frac{C_{ref}}{F_{ref}} \]

(3) \[OFL = F_{MSY} \frac{C_{ref}}{F_{ref}} \]

- Use a per-recruit statistic as proxy for \(F_{MSY} \):

(4) \[OFL = \frac{F_{benchmark}}{F_{ref}} C_{ref} \]
Flow diagram of approach

Mean length Z (Gedamke-Hoenig)

$\bar{L}, L_c, k, L_\infty$ → Z by period, F_{ref} & C_{ref}

(Most recent year of change to present)

External M \downarrow

$F_{\text{benchmark}}$ (e.g., $F_{0.1}$, F_{max}, $F_{30\%}$)

$OFL = \frac{F_{\text{benchmark}}}{F_{\text{ref}}} C_{\text{ref}}$

Per recruit analysis

External values: M, w_a, age-length, fecundity \downarrow
Example: Queen snapper in Puerto Rico

Data:
- lengths
- catches
Describe uncertainty in growth by simulation

Overfishing not occurring
Bottom line:

- Mean length \rightarrow BH-Z \rightarrow multiple years \rightarrow GH (changing Z)

- Add additional data:
 - recruit index
 - effort
 - catch rate (cpue)
 - catch & cpue
 - other species

- Estimate q, M, F_t, Z_t; relax assumptions, obtain diagnostics
- Combine results with other analyses: yield per recruit, abundance estimation \rightarrow OFL
- Bridge to production models & other models
Acknowledgements

NMFS Southeast Fisheries Science Center through University of Miami

NMFS Stock Assessment Improvement

Alaska Sea Grant

U of Alaska Fairbanks at Juneau & Terry