Evaluating the flexibility of a reflex action mortality predictor to determine bycatch mortality rates:

A case study of Tanner crab (Chionoecetes bairdi) bycaught in Alaska bottom trawls

Noëlle Yochum, Oregon State University

Craig Rose and Carwyn Hammond, NOAA Alaska Fisheries Science Center
Bycatch mortality

• A component of fisheries mortality

• **Discard-mortality:** captured, brought on-deck, released
 • Capture process
 • Air and sunlight exposure
 • Handing/ injury on deck

• **Unobserved-mortality:** encounters gear, without capture
 • Injury from gear or from captured animals
Bycatch mortality

• Direct observation
 • Mark-recapture
 • Acoustic telemetry
 • Captive holding

• Physiological assessment (stress)
 • Metabolic
 • Biochemical
 • Immune response
RAMP

- Reflex Action Mortality Predictor
 - (Davis and Ottmar, 2006; Davis, 2007)

- Relates reflex impairment to probability of mortality
RAMP

• Quantify bycatch mortality
• Evaluate influences on mortality
• Conservation engineering

• Fishes and invertebrates
• Pot and trawl gear
Case Study: Bycaught Tanner Crab

- Alaska bottom trawl fishery
 - Bering Sea
 - Gulf of Alaska
- Tanner and snow crab bycatch
 - *Chionoecetes bairdi* and *C. opilio*
- Zero retention
- Prohibited fishing grounds
- Bycatch limits
Bycatch Mortality: Tanner crab

- **Unobserved Tanner and snow crab bycatch**
 - Stoner et al., 2008, Rose et al., 2013; Hammond et al., 2013
 - Bottom trawl fishery in the Bering Sea
 - RAMP
 - Gear modifications

- **Discarded Tanner crab**
 - Blackburn and Schmidt (1988)
 - 17%: bottom trawl fishery in the Gulf of Alaska
 - Viability assessments
 - Stevens (1990)
 - 78%: bottom trawl fishery in the Bering Sea
 - At-sea holding
RAMP Reflexes for Tanner and Snow Crab
Stoner et al., 2008

- Leg flare
- Leg retraction
- Chela closure
- Eye retraction
- Mouth closure
- “Kick”
Bycatch Mortality: Tanner crab

- **Unobserved Tanner and snow crab bycatch**
 - Stoner et al., 2008, Rose et al., 2013; Hammond et al., 2013
 - Bottom trawl fishery in the Bering Sea
 - RAMP
 - Gear modifications

- **Discarded Tanner crab**
 - Blackburn and Schmidt (1988)
 - 17%: bottom trawl fishery in the Gulf of Alaska
 - Viability assessments
 - Stevens (1990)
 - 78%: bottom trawl fishery in the Bering Sea
 - At-sea holding
Evaluation of RAMP: “Flexibility”

Graph showing the probability of mortality against reflex impairment score.

- Probability of Mortality
- Reflex Impairment Score

Points on the graph:
- Unobserved-mortality
- Discard-mortality
Evaluation of RAMP: “Flexibility”

“Unobserved-mortality”
- Hammond et al., 2013
- Bottom trawl fishery
- Research trip
- Bering Sea
- RAMP
- Auxiliary net
- Short tows
- Air exposure < 15 minutes
- Some recovery in water before assessment

“Discard-mortality”
- This study
- Bottom trawl fishery
- Commercial trip
- Gulf of Alaska
- RAMP
- Commercial fishing
- Commercial tow duration
- Average air exposure 90 minutes (9-230 minutes)
- No recovery in water
Discard-mortality Study: Data Collection

- May 2011
- F/V Sea Mac
- 3-day shallow-water flatfish bottom trawl fishery

• Tow information:
 • Water depth
 • Temperature at depth
 • Tow duration
 • Catch size
Discard-mortality Study: Data Collection

- Crab information:
 - Carapace width (mm)
 - Sex
 - Chela loss
 - Shell condition (0-5)
 - RAMP “Score” (0-6)
 - Time out of water prior to assessment
Discard-mortality Study: Holding

On-board Tanks
- Plumbed on-board tanks (1-3 days)
- Cable tie with RFID chip (Hallprint)
Discard-mortality Study: Holding

At-sea Cages
- 92 crab
- Mixed Score, size, and sex
- 11 days of holding

Laboratory Tank
- 28 crab
- Mixed Score, size, and sex
- 12 days of holding
- Fed
- Temperature controlled
Discard-mortality Study: Data Analysis

- **Logistic RAMP**: Binary logistic regression
 - Response: Mortality
 - Predictors: Fishing and biological variables
 - Score
 - Sex
 - Shell condition
 - Haul duration
 - Carapace width
 - Continuous
 - Binned: Small and large (≥90 mm)
 - Backward stepwise model selection

- **Discrete RAMP**
 - Actual proportion died
Study Comparison: Data Analysis

- Compare RAMPS
 - Visual
 - Fisher’s exact test
 - Mantel-Haenszel test
 - Logistic RAMP: Combined data
 - “Study” as a predictor
 - Interaction between “Study” and “Score”
 - Backward stepwise model selection
 - Mortality rate estimation
Discard-mortality Study: Results

- 261 discard crab
- Immediate mortality: 12 crab
- 68% held crab survived
Discard-mortality Study: Results

- 86% within 1 day
- 92% within 2 days
Discard-mortality Study: Results

- **Laboratory holding**
 - Mortality at 12 days
 - 3 Score-zero crab died

- **At-Sea Cage holding**
 - 3 crab died
 - Scores 1, 2, and 6
Study Comparison: Results

Selected predictors:

- Discard-mortality
 - Score

- Combined data
 - Score
 - Binned-width
 - Study
 - Study * Score
Study Comparison: Results

Selected predictors:

• Discard-mortality
 • Score

• Combined data
 • Score
 • Binned-width
 • Study
 • Study * Score

$Score_{50}: \sim 2$

$Score_{50}: 3$
Study Comparison: Results

Selected predictors:

- Discard-mortality
 - Score
- Combined data
 - Score
 - Binned-width
 - Study
 - Study * Score
Study Comparison: Results

![Bar chart showing comparison of discard-mortality RAMP and unobserved-mortality RAMP across Logistic and Discrete categories. The chart indicates that both categories show a 31% mortality rate, with Logistic having a discard-mortality RAMP of 24% and a unobserved-mortality RAMP of 31%. Discrete also shows a discard-mortality RAMP of 24% and a unobserved-mortality RAMP of 31%.]
Study Comparison: Conclusion

• Main difference:
 • Treatment of crab before assessment
 • Recovery period in water
 • Discard: No
 • Unobserved: Sometimes
 • Air exposure:
 • Discard: 90 minute average (9-230 minutes) of air exposure
 • Unobserved: <15 minutes
Study Comparison: Recommendations

• RAMP may produce more accurate mortality estimates when applied to animals experience similar stressors as those evaluated to create the RAMP, through similar methodology

• Especially important with large number of animals with intermediate Scores
Study Comparison: Recommendations

- Creating a RAMP:
 - Create well documented, repeatable methods
 - Collect data on all possible stressors and evaluate them for their contribution to mortality
 - In methods, make it clear what is meant by “absent” and how immediate mortalities are treated
- Reflexes:
 - Assess RAMP reflexes in a standardized order
 - If reflexes influence other reflexes, do last or not at all
 - If reflex is difficult to determine presence/absence do not use
Conclusions

• RAMP is an effective tool for quantifying and evaluating bycatch mortality

• RAMP from this study can be used to determine discard mortality rates for Tanner crab in the Alaska bottom trawl fishery

• Additional study needs to be done on the role of a recovery period in water and air exposure on determining a RAMP “Score” (in process)
Acknowledgements

• **Funding support:**
 - Northeast Consortium
 - Collaborative Fisheries Research Graduate Fellowship
 - Northeast Consortium/ UNH (Chris Glass)
 - VIMS/ VA Sea Grant (Troy Hartley)
 - SMAST/ Umass (Steven Cadrin)
 - NOAA National Cooperative Research Program
 - Munson Wildlife Graduate Travel Scholarship

• **Additional Support:**
 - F/V *Sea Mac* (D. Sitton, J. Sanchez, and S. Perez)
 - K. Swiney and the NOAA Alaska Fisheries Science Center (Kodiak, AK)
 - J. Bonney and K. McGauley (Alaska Groundfish DataBank)
 - S. McEntire
 - Hallprint (www.hallprint.com)
Questions?