Mortality rate of Tanner crab bycatch discarded by Alaska bottom trawlers

Craig S. Rose, FishNext Research
Carwyn Hammond, Alaska Fisheries Science Center, NMFS
Kathleen McGauley, Alaska Groundfish Data Bank
Noelle Yochum, Oregon State University
Cooperative research to address fisheries management questions

- Scientists working and fishing industry working together on management issues – understand or reduce

- Trawling issues
 - Bycatch – catch of fish not wanted or allowed to be kept
 - Additional non-target mortality (escape / unobserved)
 - Effects on seafloor and habitats
Bycatch management for Alaska groundfish fisheries

- Many valuable managed stocks occupy same grounds
- Many area / time closures
- Prohibited species catch (PSC)
- PSC are fish/crabs that other fisheries rely on – trawlers must discard
 - Salmon
 - Halibut
 - Crabs
 - Other groundfish
- Concerns increase for bycatch stocks is in trouble
Bycatch management for Alaska groundfish fisheries

• Track bycatch through observer sampling and stop fishing when a set amount is exceeded
 • By fishery – all boats in a pool no individual incentive to improve
 • Allocated to vessel or cooperative – requires more data
• Estimate mortality rate from experimental studies
 • For example, halibut and crab can often survive, while salmon rarely do
Crab mortality from trawl fisheries

- **Unobserved mortality**
 - Crabs damaged from encountering trawls on seafloor, but not captured (Hammond et al. 2013, Rose et al. 2013)

- **Discard mortality**
 - Crabs captured, sorted out aboard the vessel, and released
 - Immediate mortality – easiest to assess
 - Delayed mortality – occurs after release (not directly observable)

- Our study – estimating immediate and delayed mortality rates for Tanner crabs discarded from trawl catches
Previous estimate for Tanner crab discard mortality

- Brad Stevens (Kodiak NMFS lab) 1987 – published 1990
- Held crabs from trawl catches during Bering Sea trawl experiment on avoiding crab bycatch
- Foreign (Soviet Union) processor with catches delivered from U.S. vessels
- Long times on-deck – increased mortality (up to 12.8 hours)
- Held crabs in on-deck tanks, ‘vitality’ assessments
 - Vitality assessment included one RAMP reflex (mouth)
- Overall average mortality 78%
Previous estimate for Tanner crab discard mortality – Stevens 1990

Captivity includes ½ tow time – approximate average 1 hour more than air exposure
Reflex scans of crabs discarded from Gulf of Alaska (Kodiak) trawlers

- Six vessels hosted scientists to ride aboard and assess the crabs as they were returned to the sea (1265 crab assessments from two major fisheries with Tanner bycatch)

<table>
<thead>
<tr>
<th>Vessel</th>
<th>Species</th>
<th>Tows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar Del Norte</td>
<td>arrowtooth flounder</td>
<td>7</td>
</tr>
<tr>
<td>Marathon</td>
<td>arrowtooth flounder</td>
<td>7</td>
</tr>
<tr>
<td>Chelissa</td>
<td>arrowtooth flounder</td>
<td>6</td>
</tr>
<tr>
<td>Excaliber II</td>
<td>shallow water flatfish</td>
<td>11</td>
</tr>
<tr>
<td>New Life</td>
<td>shallow water flatfish</td>
<td>13</td>
</tr>
<tr>
<td>Caravelle</td>
<td>shallow water flatfish</td>
<td>11</td>
</tr>
</tbody>
</table>
Reflex scans of crabs discarded from Gulf of Alaska (Kodiak) trawlers

- On deck sorting, 5 with Conveyor belts
Reflex scans aboard a Bering Sea processor trawler

- Hosted AFSC scientist for a one week trip
- Generally longer times (1 - 3 hours) before release than the Kodiak trawlers
- Several tows at end with very long onboard times 7 to 24 hours
Discard mortality RAMP from previous talk (Yochum et al.) applied to reflex scans
Revised estimates

1990 estimate
Air Exposure

Increasing mortality above 1 hour

Substantial additional variability between tows and vessels
Air Exposure

Increasing mortality above 1 hour
Air Exposure
Increasing mortality above 1 hour

Tows > 7 hours essentially 100%
Air Exposure
Increasing mortality above 1 hour

Bering 53%
SWF 45%
ATF 28%
ATF 42%

> 7 hours
100%

Combined
More small crabs came from higher mortality vessels. On those vessels, higher mortality occurred with both large and small crabs.
Caveats

• Mortality rates reflect holding conditions during validation
 • Longer delays not reflected – infection, molting effects
 • Some environmental factors not reflected
 • Predation
 • Temperature change from surface to seafloor
 • Negative effects of holding conditions
• However, most crabs either lively with all reflexes or moribund
 • RAMP estimates most important for remaining 10 – 40%
Conclusions

• Crab mortality rates lower than originally estimated
 • Due to long on-deck times during earlier study
• Time on deck affects mortality
 • Short sorting time, other factors more important
 • Sorting times 1 – 3 hours, air exposure becomes a significant factor
 • Sorting times > 3 hours, few survive (>7 none)
• Most vessel and tow variability not explained by time on deck
 • May indicate improvement possible with better handling
Conclusions

• Potential for improving mortality from deck handling
 • Catch handling – conveyors, improved lifts?, speed
 • Discard handling – design chutes for easy and gentle release

• Incentives for acting to reduce mortality?
 • Document release time – EM application?
 • RAMP sampling
 • Cost / benefit of sampling, estimation, management
 • Simplified reflex set