Techniques for real-time, active tracking of sea lions

Techniques for real-time, active tracking of sea lions

M.-A. Lea, and B. Wilson

Techniques for real-time, active tracking of sea lionsThis is part of Sea Lions of the World
PDF    
To download the free PDF [273.1 KB], please enter:
-or-

Description

The movements of otariids at sea are generally studied by satellite telemetry. At fine scales (1-20 km), however, the level of precision provided by this technique (± mean 1.5-19 km) may be insufficient to accurately reconstruct the track of an individual and/or integrate such movement data with habitat and environmental features. An alternative technique is the boat-based active tracking of individuals by very high frequency (VHF) or acoustic telemetry. By following an individual equipped with transmitters, detailed observations of habitat use, predator occurrence, social context, behavioral state, and prey availability may be integrated to provide a real-time context in which to place the animals' movements. For species such as the Steller sea lion (Eumetopias jubatus), which are difficult to recapture, such techniques enable the collection of much needed contextual information. Here we describe the methods we applied to actively track Steller sea lions. Twenty-one juveniles were captured in Southeast Alaska during October 2003 and February 2004. They were fitted with a variety of VHF, satellite, and/or acoustic tags and were tracked through the winter and spring of 2003-2004. The use of ship-based VHF telemetry in conjunction with real time navigation plotting software was highly successful and provided 37 fine-scale tracks of coastal and pelagic sea lion movements covering a total distance of 482 km. Acoustic telemetry techniques were less successful because of the suspected overlap in tag transmission frequency and sea lion hearing. The study represents the first active tracking of a sea lion species, highlighting the high-resolution tracks and contextual behavioral and habitat information that can be obtained using VHF telemetry at sea.

Item details