CRABS IN COLD WATER REGIONS:
BIOLOGY, MANAGEMENT, AND ECONOMICS

University of Alaska Sea Grant College Program
AK-SG-02-01

Price: $40.00
Elmer E. Rasmuson Library Cataloging-In-Publication Data

Crabs in cold water regions : biology, management, and economics / Editors: A.J. Paul ... [et al.]. Fairbanks, Alaska : University of Alaska Sea Grant, [2002].

876 p. : cm. – (Lowell Wakefield Fisheries Symposium ; [19th]), (University of Alaska Sea Grant College Program ; AK-SG-02-01)

Note: "... Proceedings of the symposium Crab2001, Crabs in cold water regions: biology, management, and economics, January 17-20, 2001, Anchorage, Alaska, USA."

Includes bibliographical references and index

QL444.M33 C73 2002

Credits

This book is published by the University of Alaska Sea Grant College Program, which is cooperatively supported by the U.S. Department of Commerce, NOAA National Sea Grant Office, grant no. NA86RG-0050, project A/161-01; and by University of Alaska Fairbanks with state funds. University of Alaska is an affirmative action/equal opportunity institution.

Sea Grant is a unique partnership with public and private sectors combining research, education, and technology transfer for public service. This national network of universities meets changing environmental and economic needs of people in our coastal, ocean, and Great Lakes regions.
About the Symposium

Crab is one of the world's most valuable marine consumables, especially to Alaska. So it is not surprising that the topic of crab has been addressed more often than any other by the Lowell Wakefield Symposium series, each time at the request of resource managers and researchers. Crab2001, Crabs in Cold Water Regions: Biology, Management, and Economics, held January 17-20, 2001 in Anchorage, Alaska, was the sixth crab symposium in the series (1982, 1984, 1985, 1989, 1995, and 2001). The year for the Crab2001 symposium had been "selected" six years earlier by participants at the 1995 Wakefield symposium on high latitude crabs.

The symposium was organized and coordinated by Brenda Baxter, University of Alaska Sea Grant Program, with the assistance of the organizing committee. Committee members are: Earl Dawe, Department of Fisheries and Oceans, Canada; Glen Jamieson, Department of Fisheries and Oceans, Canada; Gordon Kruse, University of Alaska Fairbanks, School of Fisheries and Ocean Sciences (formerly of Alaska Department of Fish and Game); Bob Otto, U.S. National Marine Fisheries Service, Alaska Fisheries Science Center; A.J. Paul, University of Alaska Fairbanks, Institute of Marine Science; and Dave Witherell, North Pacific Fishery Management Council.

Symposium sponsors are: University of Alaska Sea Grant College Program; Alaska Department of Fish and Game; North Pacific Fishery Management Council; U.S. National Marine Fisheries Service; and Wakefield Endowment, University of Alaska Foundation.

The Lowell Wakefield Symposium Series

The University of Alaska Sea Grant College Program has been sponsoring and coordinating the Lowell Wakefield Fisheries Symposium series since 1982. These meetings are a forum for information exchange in biology, management, economics, and processing of various fish species and complexes as well as an opportunity for scientists from high latitude countries to meet informally and discuss their work.

Lowell Wakefield was the founder of the Alaska king crab industry. He recognized two major ingredients necessary for the king crab fishery to survive—ensuring that a quality product be made available to the consumer, and that a viable fishery can be maintained only through sound management practices based on the best scientific data available. Lowell Wakefield and Wakefield Seafoods played important roles in the development and implementation of quality control legislation, in the preparation of fishing regulations for Alaska waters, and in drafting international
agreements for the high seas. Toward the end of his life, Lowell Wakefield joined the faculty of the University of Alaska as an adjunct professor of fisheries where he influenced the early directions of the university’s Sea Grant Program. This symposium series is named in honor of Lowell Wakefield and his many contributions to Alaska’s fisheries. Three Wakefield symposia are planned for 2003-2005.

Proceedings Acknowledgments

This publication presents 53 symposium papers. Each full-length paper was reviewed by two peer reviewers, extended abstracts had one review each, and papers were revised according to recommendations by associate editors who generously donated their time and expertise: A.J. Paul, Earl G. Dawe, Robert Elner, Glen S. Jamieson, Gordon H. Kruse, Robert S. Otto, Bernard Sainte-Marie, Thomas C. Shirley, and Douglas Woodby.

The first two papers, by T.C. Shirley and B.G. Stevens, and the last, by S.D. Zaklan, were not presented at the symposium; the editors chose to include them in the book. Thanks go to the authors of all 53 contributions.

Copy editing is by Kitty Mecklenburg of Pt. Stephens Research Associates, Auke Bay, Alaska; and Sue Keller, University of Alaska Sea Grant. Layout and format are by Kathy Kurtenbach, and cover design is by Tatiana Piatanova, both of University of Alaska Sea Grant.
Index

A
Agnalt, Ann-Lisbeth, 425
Alaska
ADFG Mandatory Shellfish Observer Program, 693-704
collection, 704
initial program, 694-696
North Pacific Fisheries Research Plan, 698
overview of program, 702-703
proposal for state-funded program, 698-702
revisions to program, 696-698
mortality of Chionoecetes bairdi (Tanner crab) and Chionoecetes opilio (snow crab) incidentally caught in Patinopecten courinus (weathervane scallop) fishery in, 717-732
southeast: restratification of Paralithodes camtschaticus (red king crab) stock assessment areas in, 457-473
See also Aleutian Islands; Alitak Bay; Auke Bay; Bristol Bay; Frederick Sound; Gulf of Alaska; Kodiak/Kodiak Islands; Prince William Sound; St. Matthew Island
Alaskan crabs, checklist of, 5-8
Aleutian Islands
central: growth of Paralithodes camtschaticus (red king crab) to, 39-50
eastern: growth and molting of Lithodes aequispinus (golden king crab) to, 169-187
estimating natural mortality of Lithodes aequispinus (golden king crab) from tag capture data in, 51-75
See also Bering Sea and Aleutian Islands (BSAI)
Alinsunurin, Rachel, 537
Alitak Bay, Kodiak, Alaska: bitter crab syndrome in Chionoecetes bairdi (Tanner crab) in, 401-403
Argentina. See Beagle Channel; San Jorge Gulf
Armstrong, David A., 609
Atlantic Ocean, southwestern. See San Jorge Gulf, Argentina
Auke Bay, Alaska: habitat preferences of juvenile Chionoecetes bairdi (Tanner crab) related to oil pollution in, 631-642
Australia, southern: estimating intermolt duration of Pseudocarcinus gigas (giant crab) in, 17-28
B
Baglin, Raymond E., 305
Balzi, Pamela, 283
Barents Sea: introduction of Paralithodes camtschaticus (red king crab) to, 425-438
discussion, 432, 435-436
materials and methods, 427-430
experiments (tag retention and juvenile growth), 428, 429-430
Mating behavior, 427-428, 429
results, 431-432
algal islands, 431
See also Norway
Beagle Channel, Argentina
growth, maturity, and mating of male Lithodes santolla (southern king crab) in, 147-168
life history of Munida subrugosa (Galatheid) in, 115-134
Bering Sea and Aleutian Islands (BSAI): estimating natural mortality of king crabs from tag recapture data, 51-75

eastern (EBS):

injuries and aerial exposure to bycatch crabs during handling in, 211-212

morphological characteristics of Chionoecetes hybrids in, 97-113

observer data in, 537-550

historic role of observers, 538

observer database utilization, 539-548

additional observer data collections, 544-548

area boundaries, 544

gear, 542-543

gear storage, 543-544

management plans and harvest strategies, 541

postseason data analysis, 541-542

preseason fisheries assessment and inseason management, 539-540

stock assessment, 540-541

program data collection and methods, 538-539

summary, 548

spatiotemporal trends in size at maturity of Chionoecetes bairdi (Tanner crab) in, 339-349

estimating natural mortality of Lithodes aequispinus (golden king crab) from tag recapture data in, 51-75

mortality of Chionoecetes bairdi (Tanner crab) as bycatch of Patinopecten courinus (weathervane scallop) fishery in, 717-732

northwestern: population structure of Paralithodes platypus (blue king crab) in, 511-520

windchill effects on Chionoecetes opilio (snow crab) in, 81-96

bitter crab disease/syndrome (BCD)
in Chionoecetes bairdi (Tanner crab)
(Alitak Bay, Kodiak, Alaska), 401-403

in Chionoecetes opilio (snow crab)
(Newfoundland/Labrador continental shelf), 385-400

discussion, 396-398

effects on mortality and recruitment, 397-398

general distribution, 396-397

methods, 387-390

data treatment and analysis, 389-390

sampling, 387-389

results, 390-396

density and abundance relationships, 394-396

prevalence and distribution, 389, 390-394

Blackburn, James E., 213

Blau, S. Forrest, 39, 51, 169, 213, 225, 305

blue king crab. See Paralithodes platypus

Boutilier, J.A., 439

Boyle, Larry, 693

Bristol Bay, Alaska:
estimating natural mortality of Paralithodes camtschaticus (red king crab) from tag recapture data in, 51-75

length-based analysis of Paralithodes camtschaticus (red king crab) abundance in, 475-494

British Columbia coast, Canada: new fishery for Chionoecetes tanneri (grooved Tanner crab) off, 439-456

collection, 454-455

methods, 442-446

analysis, 442-446

sources of mortality, 446

surveys, 442-444

results and discussion, 447-454

biomass estimates, 450, 452

distributional trap survey, 444, 448, 450, 451

experimental harvest, 451, 452-453

phased approach, 454

sources of fishing mortality, 452, 453

trawl survey, 447-450

Bukin, Sergey D., 521

Burmeister, AnnDorte, 255, 733

Burt, Ryan, 537

Byersdorfer, Susan C., 97, 211, 401
Crabs in Cold Water Regions: Biology, Management, and Economics

California, northern
estimating molting probabilities of female *Cancer magister*(Dungeness crab) in, 77-80
sperm plug as indicator of female mating success of *Cancer magister*(Dungeness crab) in, 269-271
Canada. See British Columbia coast
Cancer magister(Dungeness crab)
estimating molting probabilities of female (northern California), 77-80
habitat use by juvenile, in nursery estuaries (Pacific coast), 609-629
discussion, 621-627
materials and methods, 610-616
data analysis, 616
habitat characteristics, 614-615
study area, 610-611
survey data collection, 611-614
results, 616-621
age 0+ results, 618-621
age 1+ results, 616-618
comparison of habitat characteristics across spatial location, 621
megalopae, relative trophic position of (northern Gulf of Alaska and Prince William Sound), 645-649
materials and methods, 645-648
results and discussion, 648
setal stage duration of female adult, 9-15
sperm plug as indicator of female mating success in (northern California), 269-271
Cancer pagurus(edible crab, European edible crab)
fishery (Shetland, Scotland), 705, 709-710, 711, 713-714
reproductive capacity
morphometrically assessed in (Shetland Island), 405-423
discussion, 413-417, 419-421
materials and methods, 408-411
results, 412
abdomen width, 412, 415, 416, 417, 418-419
sexual dimorphism and chela allometry, 412, 413, 414

Carcinus maenas(European green crab; shore crab)
dispersal on Pacific coast, 561-576
biological factors, 563-564
context of regional oceanography, 564-567
discussion, 572-573
methods, 567-568
results, 568-571
in British Columbia, 568-569
oceanographic analyses, 569-570
transport mechanisms, 570-571
fishery in Shetland, Scotland, 705, 711
Cherniawsky, J.Y., 561
Chionoecetes bairdi(Tanner crab)
bitter crab syndrome in (Alitak Bay, Kodiak, Alaska), 401-403
habitat preferences of juvenile, related to oil pollution (Auke Bay, Alaska), 631-642
discussion, 640-642
methods, 633-635
animal collection, 633
avoidance test protocol, 634-635
oiled sediment preparation, 634
substrate preference, 633
results, 635-640
response to oil, 635-640
substrate preference, 635
morphological characteristics of hybrids of (eastern Bering Sea), 97-113
discussion, 110, 112
methods, 99-102
results, 102-110
character scores, 102-103, 104-106
classification tree, 108, 109-110
discriminant function analysis, 103, 106-107
sources of variation within genetic types of carapace scores, 108, 110, 111
mortality of, as bycatch of *Patinopecten courinus*(weathervane scallop) fishery (Bering Sea), 717-732
data and methods, 718-719
discussion, 730-731
results, 719-730
generalized linear model (GLM), 726-730
Chionoecetes bairdi, mortality of (continued)
graphical analysis and summary statistics, 719-726
spatiotemporal trends in size at maturity of (eastern Bering Sea), 339-349
methods, 340-341
results and discussion, 341-348
survival of, tagged with Floy tags, 551-560
discussion, 556-558
materials and methods, 552-554
results, 554-556
Chionoecetes japonicus (red snow crab): larval development of (Osaka, Japan), 135-146
discussion, 143-145
materials and methods, 136
results, 136-143
crab 1, 142-143, 144
megalopa, 139-142, 143
zoea 1, 137-138
zoea 2, 138-139
Chionoecetes opilio (snow crab) bitter crab disease in (Newfoundland/Labrador continental shelf), 385-400
discussion, 396-398
effects on mortality and recruitment, 397-398
general distribution, 396-397
methods, 387-390
data treatment and analysis, 389-390
sampling, 387-389
results, 390-396
density and abundance relationships, 394-396
prevalence and distribution, 389, 390-394
female reproductive condition (west Greenland), 255-267
conclusion, 265-266
discussion, 263-265
egg stages, 263-264
ovaries and clutch, 264-265
materials and methods, 257-260
data analysis, 260
study area and sampling procedure, 257-260
subsampling of females and laboratory processing, 260
Chionoecetes opilio, female reproductive condition (continued)
results, 260-263
annual changes in color of brood, 260
clutch and ovary weight in subsamples, 261, 262, 263
number of eggs per clutch, 261-262, 264, 265
weather and temperature conditions, 260, 261
male distribution and demography (Newfoundland/Labrador continental shelf), 577-594
discussion, 587-592
effects of depth on temperature, 589-592
trends in distribution and size composition, 587-589
methods, 578-581
data collection, 578-580
data treatment and analysis, 581
results, 581-587
distribution, 581-583
size composition, 583-586
size segregation by depth and temperature, 586-587
morphological characteristics of hybrids of (eastern Bering Sea), 97-113
discussion, 110, 112
methods, 99-102
results, 102-110
character scores, 102-103, 104-106
classification tree, 108, 109-110
discriminant function analysis, 103, 106-107
sources of variation within genetic types of carapace scores, 108, 110, 111
mortality of, as bycatch of Patinopecten courinus (weathervane scallop) fishery (Bering Sea), 717-732
data and methods, 718-719
discussion, 730-731
results, 719-730
generalized linear model (GLM), 726-730
graphical analysis and summary statistics, 719-726
Chionoecetes opilio (snow crab) (continued)
spatiotemporal trends in (eastern Bering Sea), 339-349
methods, 340-341
results and discussion, 341-348
windchill effects on, 81-96
discussion, 90-94
materials and methods, 84-86
statistical analysis, 86
windchill treatments, 85-86
results, 86-90
autonomy, 87-88, 89
mortality, 86-87, 88
righting response, 88, 90, 91
Chionoecetes tanneri (grooved Tanner crab): new fishery for (British Columbia coast, Canada), 439-456
conclusion, 454-455
methods, 442-446
analysis, 442-446
sources of mortality, 446
surveys, 442-444
results and discussion, 447-454
biomass estimates, 450, 452
distributional trap survey, 444, 448, 450, 451
experimental harvest, 451, 452-453
phased approach, 454
sources of fishing mortality, 452, 453
trawl survey, 447-450
Chizzini, Alejandro, 115
Clark, John E., 457
Colbourne, Eugene B., 577
Cooys Bay, Oregon. See Oregon coast crustaceans: estimating duration of molt stages in, 351-365
discussion, 361, 363-365
estimator development, 352-358
Buchholz (1991) method, 353-355
proposed new methods, 356-358
results, 360-361
days to molt experiments, 361, 362
days to stage experiments, 360-361
simulation methods, 358-360
days to molt experiments, 359
days to stage experiments, 358-359

E
edible crab. See *Cancer pagurus*
Erimacrus isenbeckii (horsehair crab; Japanese hair crab)
population assessment using length-based analysis for (eastern Hokkaido, Japan), 495-509
discussion, 504-508
methods, 496-504
data, 496-498
LPA model, 498-502
parameter estimation, 502-504
results, 504
trap/trawl data for (Tatar Strait, southern, Russia), 526-527, 532-535
European edible crab. See *Cancer pagurus*
European green crab. See *Carcinus maenas*

F
Farestveit, Eva, 425
Foreman, M.G.G., 561
Frederick Sound, Alaska: movement and habitat utilization by *Lithodes aequispinus* (golden king crab) in, 595-608

G
Gardner, Caleb, 17
giant crab. See *Pseudocarcinus gigas*
golden king crab. See *Lithodes aequispinus*
Grays Harbor, Washington. See Washington coast
green crab, European. See *Carcinus maenas*
Greenland
southeast: *Lithodes maja* (northern stone crab) at, 733-749
west (Disko Bay and Sisimiut): reproductive condition of mature female *Chionoecetes opilio* (snow crab) in, 255-267
Gulf of Alaska: relative trophic position of *Cancer magister* (Dungeness crab) megalopae, in, 645-649
Gunderson, Donald R., 609

H
hair crab, Japanese. See *Erimacrus isenbeckii*
Hanasaki king crab. See *Paralithodes brevipes*
Hankin, David G., 9, 77, 269, 351
Hapalogastrinae subfamily. See *Lithodidae* family
Heijnis, Hendrik, 17

helmet crab. See *Telmessus cheiragonus*

Hematodinium species. See bitter crab disease

Hinkley, Sandy, 457

Hjelset, Ann Merete, 681

Hokkaido, Japan

- eastern: population assessment for *Erimacrus isenbeckii* (Japanese hair crab) using length-based analysis, 495-509
- southern: reproductive cycle of *Telmessus cheiragonus* (helmet crab) in, 323-337

horsehair crab. See *Erimacrus isenbeckii*

Hoyt, Zachary N., 595

I

Ishikawa, Manabu, 189

Ivanov, Boris G., 651

J

Jadamec, Luke, 97

Jamieson, G.S., 561

Japan. See Hokkaido; Osaka

Japanese hair crab. See *Erimacrus isenbeckii*

Jenkinson, Andrew, 17

Johnson, B. Alan, 305

Jørstad, Knut E., 425

K

Kamchatka coast/shelf, western, Russia

- stock management problems and research of *Paralithodes camtschaticus* (red king crab) in, 651-680
- trap/trawl catch data for *Paralithodes camtschaticus* (red king crab) on, 522-525, 526-527, 532-535

Kanno, Yasuji, 495

king crab. See *Lithodes* species;

- *Paralithodes* species
- king crab, blue. See *Paralithodes platypus*
- king crab, golden. See *Lithodes aequispinus*
- king crab, Hansaki. See *Paralithodes brevipes*
- king crab, red. See *Paralithodes camtschaticus*
- king crab, southern. See *Lithodes santolla*

Kittaka, Jiro, 189

Kline, Thomas C., 645

Kodiak/Kodiak Island, Alaska

- Alitak Bay: bitter crab syndrome in *Chionoecetes bairdi* (Tanner crab) in, 401-403
- archipelago: mating pairs of *Paralithodes camtschaticus* (red king crab) at, 305-321
- Management Area: female size at maturity of *Paralithodes camtschaticus* (red king crab) in, 213-224
- discussion, 220-222
- methods, 214-218
- results, 218-220

Koeneman, Timothy, 457

Konishi, Kooichi, 135

Kovatcheva, Nikolina, 273

Kruse, Gordon H., 367, 475

Kuril Islands, Russia: trap catch data for *Lithodes aequispinus* (golden king crab) in, 525-535

Labrador/Newfoundland continental shelf

- bitter crab disease in *Chionoecetes opilio* (snow crab) at, 385-400
- distribution and demography of *Chionoecetes opilio* (snow crab) males at, 577-594

Levings, C.D., 561

Lithodes aequispinus (golden king crab)

Benedict, 1895: correct spelling and publication data of, 1-3

- estimating natural mortality of, from tag recapture data (Aleutian Islands, Alaska), 51-75
- discussion, 69-72
- materials and methods, 53-61
- development of M estimator, 55-61
- tag releases, 53-55
- results, 61-69

- growth and molting of (eastern Aleutian Islands, Alaska), 169-187
- discussion, 182-185
- methods, 170-172
- results, 173-182

- female growth, molting probability, and reproductive cycle, 178-182
Lithodes aequispinus, growth and molting
(continued)
- Male growth and molting probability, 173-178
- Movement and habitat utilization by (Frederick Sound, Alaska), 595-608
- Discussion, 604-606
- Movements, 605-606
- Observations, 604-605
- Materials and methods, 597-599
- Results, 600-604
- Movements, 601-604
- Observations, 600-601
- Trap catch data for (Kuril Islands, Russia), 525-535

Lithodes maja (northern stone crab):
- Occurrence of (southeast Greenland), 733-749
- Conclusions, 747
- Discussion, 745-747
- Catch rates, 745-746
- Processing and meat yield, 747
- Reproduction and fecundity, 746-747
- Materials and methods, 735-737
- Biological data, 736
- Catch data, 735-736, 739, 741
- Gear, 735
- Processing and market testing, 736
- Study area, 735, 736, 737
- Results, 737-745
- Catch rates, 737-740
- Processing and market testing, 741-744
- Reproduction and fecundity, 740-741, 743-745
- Sex and size distribution, 740, 741, 742

Lithodes santolla (southern king crab)
(continued)
- Morphometric and behavioral maturity, 155, 157-158, 160, 161
- Reproductive biology of (San Jorge Gulf, Argentina), 283-304
- Discussion, 298-301
- Materials and methods, 284-287
- Results, 287-298
- Embryogenesis and egg size, 290-291
- Fecundity, 292, 293
- Female molting, 288, 289
- Reproductive cycle, 287-288
- Reproductive structure, 288-290, 291
- Sex proportion, relative abundance, and movement, 292, 294-298

Lithodidae family (Pacific Ocean, north), 751-845
- Conclusion, 761-762
- Evolutionary relationships, 752, 763
- Fisheries, 821-823
- Life history traits, 799-814
- Parasites and commensals, 754-755, 818-820
- Predator/prey relationships, 815-817
- Subfamilies, 755-761
 - Hapalogastrinae subfamily, 755-756
 - Life history traits, 812-814
 - Predator/prey relationships, 817
 - Parasites and commensals, 820
 - Summary data, 796-798
 - Lithodinae subfamily, 756-761
 - Adaptations, 759
 - Behaviors, 758
 - Fisheries, 759-761
 - Life cycle, 756-758
 - Life history traits, 799-812
 - Parasites and commensals, 818-820
 - Predator/prey relationships, 815-817
 - Summary data, 779-796

Lithodinae subfamily, See Lithodidae family
Lovrich, Gustavo A., 115, 147
Matsuishi, Takashi, 495
Matsumoto, Toshie, 135
Miljutin, D.M., 511
Miller, Todd W., 9
Moles, Adam, 631

Molt stages in crustaceans, estimating, 351-365
discussion, 361, 363-365
estimator development, 352-358
Buchholz (1991) method, 353-355
proposed new methods, 356-358
results, 360-361
days to molt experiments, 361, 362
days to stage experiments, 360-361
simulation methods, 358-360
days to molt experiments, 359
days to stage experiments, 358-359

Moore, Holly, 51, 537
Moscow, Russia: rearing zoeae and glaucothoe of *Paralithodes camtschaticus* (red king crab) in recycling water (CRAS) system in, 273-282

Munehara, Hiroyuki, 323
Munida gregaria. See *Munida subrugosa*
Munida subrugosa: life history of (Beagle Channel, Argentina), 115-134
discussion, 128-131
materials and methods, 118-121
density and biomass, 119
maturity size, 119
natural diet, 120-121
reproductive cycle, 119-120
study site and sampling, 118-119
results, 121-128
density and biomass, 121, 122
fecundity, 124
feeding habits, 124, 127-128
gonadal and morphometric maturity, 121, 123
reproductive cycle, 121, 124, 125, 126

Nagao, Jiro, 323
Napier, Ian R., 705
Necora puber (velvet crab): fishery (Shetland, Scotland), 705, 711, 713-714
Newfoundland/Labrador continental shelf bitter crab disease in *Chionoecetes opilio* (snow crab) at, 385-400
Nizyaev, Sergey A., 521

Norway
fishery management and bycatch of *Paralithodes camtschaticus* (red king crab) in, 681-692
See also Barents Sea

O’Clair, Charles E., 595
Oh, Shauna J., 269
Okhotsk Sea. See Kamchatka coast/shelf, western, Russia
Olsen, Steinar, 425
Oregon coast: habitat use by juvenile *Cancer magister* (Dungeness crab) in nursery estuaries of, 609-629
Osaka, Japan: larval development of *Chionoecetes japonicus* (red snow crab), 135-146
Otto, Robert S., 339

Pacific coast
dispersal of *Carcinus maenas* (European green crab) on, 561-576
habitat use by juvenile *Cancer magister* (Dungeness crab) in nursery estuaries of, 609-629
See also British Columbia coast, Canada; California, northern; Oregon coast; Washington coast
Pacific Ocean, north: Lithodidae family in, 751-845
Paralithodes brevipes (Hanasaki king crab): larval culture of, 189-209
discussion, 204-206
materials and methods, 190-194
experiment with enriched *Artemia* nauplii, 192-193
fat analysis of cultured and enriched *Thalassiosira* and hatched *Artemia*, 193-194
ordinal foods, with 190-192
statistical procedures, 193
results, 194-204
larval and postlarval culture, 194, 196-197
lipid content and fatty acid composition of cultured *Thalassiosira*, 195, 199-202
survival rate, 195, 203
Paralithodes brevipes, larval culture
(continued)
Thalassiosira culture, 194-195, 198
zoea and glaucothoe stages, 195, 202, 204

Paralithodes camtschaticus (red king crab)
acoustical behavior in, 247-254
discussion, 252, 254
materials and methods, 248-249
fishing experiments, 249
reaction studies, 248-249
sound studies, 248
results, 250-252
behavior, 250
fishing experiments, 252
reactions to natural crab sound emission, 252, 253
sounds, 250, 251

estimating natural mortality of, from
tag recapture data (Bristol Bay, Alaska), 51-75
discussion, 69-72
materials and methods, 53-61
development of M estimator, 55-61
tag releases, 53-55
results, 61-69

fecundity and clutch fullness of
(Kodiak Island, Alaska), 305-321
discussion, 318-319
materials and methods, 306, 308-310
clutch fullness agreement, 309-310
embryo numbers, 308-309
sample collection, 306, 308
results, 310-317
fecundity estimation, 307, 310-312, 313
pairwise agreement among
raters, 312, 314-317
female size at maturity of (Kodiak Management Area, Alaska), 213-224
discussion, 220-222
methods, 214-218
results, 218-220

Paralithodes camtschaticus, fishery management
(continued)
gear and fishing regulations, 683-685
participation, 683
growth of (central Aleutian Islands), 39-50
discussion, 46, 48-49
methods, 40-42
results, 42-46, 47, 48
habitat preferences of juvenile, related
to oil pollution (Auke Bay, Alaska), 631-642
discussion, 640-642
methods, 633-635
animal collection, 633
avoidance test protocol, 634-635
oiled sediment preparation, 634
substrate preference, 633
results, 635-640
response to oil, 635-640
substrate preference, 635

introduction of (Barents Sea), 425-438
discussion, 432, 435-436
materials and methods, 427-430
experiments (tag retention and juvenile growth), 428, 429-432
results, 431-432
experiment, 431
genetics, 431-432
mating, 431
larval culture of, 189-209
discussion, 204-206
materials and methods, 190-194
experiment with enriched*Artemia* nauplii, 192-193
fat analysis of cultured and enriched*Thalassiosira* and hatched*Artemia*, 193-194
ordinal foods, with 190-192
statistical procedures, 193
results, 194-204
larval and postlarval culture, 194, 196-197
lipid content and fatty acid composition of
cultured*Thalassiosira*, 195, 199-202
survival rate, 195

fishery management and bycatch of
(Norway), 681-692
bycatch, 689
discussion, 690-691
fishery, 683-689
catch quotas and CPUE, 685-689
fishing areas, 685
Paralithodes camtschaticus, larval culture
(continued)
Thalassiosira culture, 194-195, 198
zoea and glaucothoe stages, 195, 202, 204
length-based analysis of abundance of
(Bristol Bay, Alaska), 475-494
methods, 476-481
data, 479
female population model, 479
male population model, 476-479
parameter estimation, 480
S-R models, 481
results and discussion, 481-492
management implications, 488-492
population abundance, 481-486
S-R relationship, 486-488
mating pairs of (Kodiak archipelago,
Alaska), 225-245
discussion, 238-242
methods, 227-231
results, 232-238
habitat and depth of collected
grasping pairs, 228-230, 232
monthly changes in size of
mating females and males, 236-238
observations by scuba divers, 232-233
seasonal presence of grasping
pairs and seasonal
changes in diver CPUE, 228-229, 233, 234
size and shell-age composition
of females and males, 233, 235
size relationships of males and
females within pairs, 235-236
molting of, observed by time-lapse
video, 29-37
discussion, 35-36
materials and methods, 30-31, 32
results, 31, 33-35
rearing zoeae and glaucothoe of, in
recycling water (CRAS) system
(Moscow, Russia), 273-282
discussion, 279-281
materials and methods, 274-275, 276
results, 275-279

Paralithodes camtschaticus (red king crab)
(continued)
restratification of stock assessment
areas of (southeast Alaska), 457-473
discussion, 470-471
methods, 458-465
Deadman Reach example, 465-470
restratification, 464-465
spatial analysis, 461, 463-464
survey methods, 458-461, 462
stock management problems and
research of (western
Kamchatka shelf, Russia), 651-680
discussion and conclusions, 673-677
fishery biology, 659-667
problems, 666-667
research concepts, 661-666
research history, 660-661
fishery management, 668-673
federal level, 669-671
history, 668
international level, 668-669
regional level, 671-673
fisheries, 652-659
dynamics, 657-659
harvesting areas, 656-657
history, 652-656
trap/trawl catch data for (western
Kamchatka coast, Russia), 522-525, 526-527, 532-535
Paralithodes platypus (blue king crab)
abundance assessment of, using catch-
survey model (St. Matthew
Island, Alaska), 367-384
abundance projections, 378-379
change in natural mortality,
370-372
discussion, 379-382
model assessment, 372-377
data, 373
four-stage model, 372-373
model fit, 374-377
parameter estimation, 373-374
estimating natural mortality of, from
tag recapture data (St.
Matthew Island, Alaska), 51-75
discussion, 69-72
materials and methods, 53-61
development of \(M\) estimator,
55-61
Paralithodes platypus, estimating natural mortality (continued)
tag releases, 53-55
results, 61-69
population structure of (northwestern Bering Sea), 511-520
discussion, 518-520
materials and methods, 512-514
results, 514-518
trap catch data for (Sakhalin coast, Russia), 526, 532-535
Patinopecten courinus (weathervane scallop): mortality of Chionoecetes bairdi (Tanner crab) as bycatch of (Bering Sea), 717-732
data and methods, 718-719
discussion, 730-731
results, 719-730
generalized linear model (GLM), 726-730
graphical analysis and summary statistics, 719-726
Pengilly, Douglas, 39, 97, 169, 213, 225, 339
Pereladov, M.V., 511
Phillips, A.C., 439
Powell, Guy C., 225
Prince William Sound, Alaska: trophic position of Cancer magister (Dungeness crab) megalopae in, 645-649
Pseudocarcinus gigas (giant crab):
estimating intermolt duration of (southern Australia), 17-28
discussion, 24, 26
methods, 20-22
proportion of females reproducing, 20-21
test of assumptions of radiometric aging, 21-22
results, 22-24
proportion of females reproducing, 22, 23
test of assumption of radiometric aging, 22, 24, 25, 26
R
red king crab. See Paralithodes camtschaticus
red snow crab. See Chionoecetes japonicus; C. tanneri
Romero, M. Carolina, 115
Rooper, Christopher N., 609
Rosenkranz, Gregg E., 717
Rudra, Hari, 425
Russia. See Barents Sea; Kamchatka coast; Kuril Islands; Moscow; Sakhalin coast; Tatar Strait, southern
S
St. Matthew Island, Alaska abundance assessment of Paralithodes platypus (blue king crab) using catch-survey model, 367-384
estimating natural mortality of Paralithodes platypus (blue king crab) from tag recapture data, 51-75
Sakhalin coast, Russia: trap catch data for Paralithodes platypus (blue king crab) on, 526, 532-535
San Jorge Gulf, Argentina: reproductive biology of Lithodes santolla (southern king crab) in, 283-304
Schwenzfeier, Mary, 537, 693
Scotland. See Shetland/Shetland Island
Scurrah, F.E., 439
Sea of Japan. See Tatar Strait, southern, Russia
shellfish: ADFG Mandatory Observer Program of (Alaska), 693-704
conclusion, 704
initial program, 694-696
North Pacific Fisheries Research Plan, 698
overview of program, 702-703
proposal for state-funded program, 698-702
revisions to program, 696-698
Shetland/Shetland Island, Scotland fisheries in, 705-716
current, 711-714
development, 709-711
history, 706-709
management, 714-716
reproductive capacity morphometrically assessed in Cancer pagurus in, 405-423
Shirley, Thomas C., 1, 81, 595
shore crab. See Carcinus maenus
Siddeek, M.S.M., 51
Sisimiut, west Greenland. See Greenland, west
Smith, Barry D., 147
snow crab. See Chionoecetes opilio
Stevens, Bradley G., 5, 29, 189, 551
stock assessment using catch-survey model, 367-384
abundance projections, 378-379
change in natural mortality, 368, 370-372
discussion, 379-382
model assessment, 372-377
data, 373
four-stage model, 372-373
model fit, 374-377
parameter estimation, 373-374
stone crab, northern. See Lithodes maja
Stone, Robert P., 595, 631
Sundet, Jan H., 681

T
Tallack, Shelly M.L., 405
Tanner crab. See Chionoecetes bairdi
Tanner crab, grooved. See Chionoecetes tanneri
Tapella, Federico, 115
Tatar Strait, southern, Russia: trap/trawl data for Erimacrus isenbeckii (horsehair crab) in, 522-525, 526-527, 532-535
Telmessus cheiragonus (helmet crab):
reproductive cycle of, 323-337
discussion, 334-336
materials and methods, 324-325, 326
results, 325, 327-337
gonadal maturation, 327, 328-331
gonad anatomy and histology, 325
minimum mature size, 327, 332
molting frequency in females, 327, 334
monthly change of gonadal maturity and GSI value, 327, 333
Teshima, Shin-ichi, 189
Tolstoganova, Larissa K., 247
Tracy, Donn A., 211
trap catch data, assessing crab resources based on, 521-536
discussion, 532-535
materials and methods, 522-526
comparing trap catches with environmental variation (Lithodes aequi spinus, Paralithodes platypus), 526
comparing trawl and trap data, 522-525
comparing two trap type catches (Lithodes aequi spinus), 522-525
trap catch data, assessing crab resources based on (continued)
effect of soak time on trap catches, 526
results, 526-532
comparing trap types, 527
comparing trawl and trap data, 526-527
effect of soak time on trap catches, 527-532
Tsujimoto, Ryo, 135

U
Ueda, Yuji, 495
Urban, Daniel, 97, 401
Usujiri, Japan. See Hokkaido, Japan, southern

V
Varangerfjord, Norway. See Barents Sea
velvet crab. See Necora puber
Vining, Ivan, 39
Vinuesa, Julio H., 147, 283

W
Warrenchuk, Jonathan J., 81, 595
Washington coast: habitat use by juvenile Cancer magister (Dungeness crab) in nursery estuaries of, 609-629
Watson, Leslie J., 51, 169
West Coast. See Pacific coast
Willapa Bay, Washington. See Washington coast
Woll, Astrid K., 733
Workman, G.D., 439

X
Xue, Qian-Li, 77

Y
Yamaguchi, Hiroshi, 495
Yaquina Bay, Oregon. See Oregon coast
Z
Zaklan, S.D., 751
Zheng, Jie, 367, 475