Alaska Sea Grant 2014–2016 Project Directory

Research and information on Alaska coastal and marine issues

As part of our core mission to enhance the wise use and conservation of Alaska’s marine, coastal, and watershed resources, Alaska Sea Grant supports a number of formal, peer-reviewed research projects through a biennial call for proposals.

Through each RFP, we seek creative and innovative research proposals in the natural and social sciences that focus on the environmental and economic viability of Alaska's coastal communities. For 2014–2016, we selected proposals that addressed either of two themes:

  1. Impacts on and strategies for coastal ecosystems and/or coastal communities adapting to change.
  2. Improvements to the economic and sociocultural sustainability of Alaskan coastal communities.

In addition to their scientific merit, and relevance to the themes above, research projects must contribute to one or more of our strategic focus areas and incorporate a significant program of outreach to communities or stakeholders. Additional favorable consideration is given to proposals that:

For 2014–2016, we funded eight projects listed below. In addition, we are supporting five coastal resilience research projects with supplemental funding from National Sea Grant. To read about projects from previous funding cycles, see our research archives.

NOTE: The linked titles below go to each project's summary web page in our research project database. To return to this project directory, use your web browser's BACK button.


Habitat Degradation Due to Melting Glaciers: Effects of Glacial Discharge on Kelp Bed Community Recruitment and Succession in Kachemak Bay [R/101-09]

Melting of arctic and subarctic glaciers carries sediment-laden freshwater to coastal habitats. Glacial discharge can structure and degrade benthic communities through multiple mechanisms that may restrict settlement and alter succession. The goal of this study is to determine the influence of glacial discharge on recruitment (bringing in new individuals) and succession in kelp forest communities. Kachemak Bay is an ideal setting for this study as an estuary with points of glacial discharge along the southern shore, and currents from the Gulf of Alaska at the mouth transporting this discharge around the bay. Recruitment of kelp and other bottom-dwelling organisms and community succession are being monitored on cleared and uncleared control rocks. Also being monitored are sedimentation, temperature, salinity, light, and nutrients. Freshwater discharge at the head of the bay will be used as a direct measure of overall glacial discharge in the bay. Additionally, wave exposure, substrate rugosity (bumpy or ridged), mobile invertebrate grazers and predators, and sea otter activity (otter pits) are being monitored to determine correlations between these drivers and algal and invertebrate initial and post-recruitment densities. Assessing the variability in succession across a gradient of glacial discharge will be a step toward determining whether recruitment or post-recruitment pressure (such as competitive interactions) are altered due to physical changes caused by glacial melt.

Applying Regime Shift Indicators to Understand the Potential Impacts of a Multi-Year Cold Event on the Bering Sea Ecosystem [R/31-24]

Ecosystems occasionally undergo very abrupt “regime shifts”—such as the simultaneous collapse of crustacean fisheries and boom in groundfish and salmon fisheries that occurred over much of Alaska in the late 1970s and early 1980s. In the past, sudden climate switches have been correlated with these ecosystem regime shifts. It is typically impossible to predict when ecological regime shifts will occur, and we have no ability to predict changes in climate. This lack of predictive ability creates considerable uncertainty for fisheries managers. However, research on early warning indicators for ecosystem regime shifts has been rapidly advancing, offering hope that we may soon be able to detect a situation where an ecosystem is at risk for undergoing a regime shift.

This project will apply the new class of early warning indicators to data from a long-running (1982–present) bottom trawl survey of the Bering Sea in order to test for signals of a new ecological response to the recent climate oddity. By applying the indicators to data for about 40 common fish and crustacean species, the project will provide information on community-wide resilience in the Bering Sea.

Economic Viability of a Directed Skate Fishery in the Gulf of Alaska [R/32-05]

Alaska has relatively healthy skate stocks. The most frequently landed skates in the Gulf of Alaska are the big skate and longnose skate, both of which are taken as nontarget catch in several longline and trawl fisheries. As a result of their abundance and relatively high ex-vessel value, there is a desire by fishers and processors to increase skate landings by allowing more nontarget retention or developing directed fisheries for them. Researchers seek to understand interactions among skate abundance, fisheries, and economics to aid in development of profitable and sustainable fisheries.

Recovering Humpback Whales and the Future of Alaska’s Hatcheries, Fisheries and Coastal Communities [R/111-04]

The recovery of humpback whales in the North Pacific after the end of industrial whaling is a conservation success. However, it also means there are a lot more very big mouths to feed. Recently whales have started feeding on juvenile salmon as they are released from hatcheries. Since these fish were raised to supplement salmon fisheries in years to come, whale predation is in conflict with salmon fisheries. The goal of this research is to evaluate how changes to hatchery release strategies could reduce the rate of whale predation and if it would make financial sense to make those changes. Researchers will use echosounders to map the distribution of salmon in the release area following different types of releases (e.g., releasing 2 gram fish vs. releasing 4 gram fish). They will use a long pole to attach a tag to the whales’ backs using suction cups. The tags will record whale movement under water to determine how much energy the whale spent while foraging. Researchers can compare the costs of foraging at hatcheries to costs of foraging on other types of prey like krill and herring. With enough tags, they can start to understand how characteristics of prey groups, such as density and depth, affect the amount of effort a whale has to put in to feed on that group. If hatcheries can change the characteristics of their fish in the water—for example by releasing them at a larger size—whales may be less likely to feed there. Finally, there may be some costs associated with alternative release strategies. The scientists will help determine if changes are financially sensible for hatcheries to implement.

Sustainability of Coastal Communities and Sea Otters: Harvest and Future Management of Sea Otters [R/111-03]

Please see The Southern Southeast Alaska Sea Otter Project website for additional information.

Scientists are studying the harvest of sea otters in Southeast Alaska through an analysis of US Fish and Wildlife Service harvest data and collection of local and traditional ecological knowledge. This interdisciplinary project brings together ecology and anthropology experts to identify pathways and outcomes for sea otter management, including co-management by tribal groups. Researchers will investigate how sea otter harvests have changed in space and time, how they affect the sea otter population, and other details. Recent increases in the number of sea otters harvested and underlying factors contributing to those increases will be investigated. Local communities, Alaska Native groups, fishermen’s groups, and government agencies are concerned about the growing sea otter population and their impact on resources to coastal communities, including important shellfish species for commercial, sport, and subsistence harvest. This project addresses impacts by sea otters on coastal ecosystems in Southeast Alaska and will inform residents and stakeholders from coastal communities about strategies for adapting to this change.

Industry-Based Documentation of the Effectiveness of F3 "Whale Pingers" at Reducing Humpback Whale Interactions with Alaska Salmon Fisheries [R/33-03]

Fishermen are the best source of information on the effectiveness of whale pingers that they place on their nets. Researchers will document this information as gleaned from meetings, interviews, voluntary logbooks, and questionnaires. Researchers also will work with fishing representatives (Industry Working Group) to identify and design field experiments that address questions the fleets and resource managers have regarding the effects pingers have on whale behavior.

Long-Term Records of Abundance and Effects of Large Scale Climate Change on Alaska Peninsula Sockeye Salmon [R/31-23]

The sustainability of Alaska’s fisheries, including the sockeye salmon fishery, is of utmost importance not only to the health of Alaska’s marine ecosystems but also to the vitality of Alaska’s coastal communities. Investigators will collect and analyze sediment cores from Sapsuk Lake, a sockeye spawning lake with traditionally large sockeye returns, to determine fluctuations in numbers of sockeye returning from the Bering Sea over the last few thousand years. This is of concern to stakeholders in the area, as historically the Sapsuk system had large runs but fish numbers have declined in recent years to the point of impacting subsistence and commercial use. The project will use sediments from Sapsuk Lake to detect relative numbers of sockeye returning to this spawning lake over the last 4000–5000 years, reconstruct changes in past productivity of the lake, and construct a model that could identify numbers of returning sockeye. Since historic data periods are too short to capture the large climatic changes the world—specifically the north—is now experiencing, long-term data sets such as this one will help determine the effects of warmer and colder climates on Bering Sea sockeye. This project will add to the knowledge of stakeholders and policymakers and may inform future management decisions and improve the chances of sustaining economic and sociocultural stability in Alaska coastal communities.

Graying of the Fleet in Alaska's Fisheries: Defining the Problem and Assessing Alternatives [R/32-06]

The “graying of the fleet” encompasses concerns for fisheries policy makers, researchers, coastal communities, and the state of Alaska. Chief among these is how the succession of limited access permits and catch-share privileges will further exacerbate the exodus of valuable fishing privileges and seafood business opportunities from Alaska’s fishing communities.

This ethnographic, mixed-methods research will focus on the perceived and experienced barriers to entry and upward mobility within fisheries among youth and young fishery participants in Bristol Bay and the Kodiak archipelago. Researchers will assess how and why fishing communities and demographic groups in these regions are differentially impacted by problems arising from the graying of the fleet. One focus will be community and demographic differences in barriers to entry.

Coastal Resilience Research Projects

Alaska Sea Grant is supporting five coastal resilience research projects with supplemental funding from National Sea Grant to increase knowledge and document the changes. The projects include a wide range of topics of interest to Alaskans witnessing the rapid effects of climate change up and down our coastline.

Developing Long-Term Records of Sea Level Fluctuations and Barrier Beach Evolution to Enhance Understanding of Ongoing and Future Coastal Change [R/112-02]

Supporting some of the largest salmon runs, as well as globally important migratory bird populations, southwestern Alaska’s coastal systems are some of the most ecologically productive in the North Pacific. These areas and the Alaska Natives who depend on them are highly vulnerable to accelerated rates of sea-level rise associated with ongoing climate change. Despite its vulnerability, the region remains largely understudied due to the enormous challenges of conducting research in this very remote region. The lack of knowledge regarding past fluctuations in sea levels and coastal landform evolution limits our understanding of future changes, hampering adaptation and mitigation strategies. During the past decade, there have been dramatic advances in the development of paleo-proxy data acquired through the use of sediment cores and trenching. These studies have illuminated centurial to millennial scale patterns in sea levels and helped decipher the driving forces behind the evolution of coastal landforms. The research will develop two paleo-climatic data sets that are important toward understanding the coastal response to climate change. These include (1) a 700–1000 year relative sea level record based on marine limiting plant macrofossil assemblages, and (2) an evolutionary model of the Goodnews Bay barrier complex based on beach ridge age, geometry, topographical surveys, and historical geospatial data sets. Additionally, the production of a digital elevation model will assist with the identification of coastal hazard zones. Sediment cores and trenching, coupled with ground-penetrating radar, macrofossil, isotopic, geospatial, and radiocarbon analysis, will provide the necessary information to achieve the stated objectives. In addition to research, a community-based hands-on coastal education program that integrates project results, cultural knowledge, and general concepts in coastal geomorphology will be carried out. Outreach will include two general education workshops held in Goodnews, a Goodnews high school coastal education project, the publication of a fact sheet, and participation in a regional stakeholder conference. These programs will inform and engage local residents, and by increasing environmental literacy will encourage informed decisions regarding coastal management strategies.

An Expert and Community Supported Decision Tool for Managing Marine Invasive Species [R/112-03]

Management decisions on invasive species threatening fisheries are often ad hoc with little or no data at hand, yet timely action is the most cost-effective way to manage. This project will conduct a formal decision analysis including a risk assessment to develop a management decision tool for optimized deployment of resources to minimize the risk of invasive species on marine resources. The approach will utilize existing data, expert elicitation, a household survey, and focus groups to incorporate existing biophysical and economic data with preferences and values of experts and affected local communities. Further, we will use a bioeconomic framework to account for the long-term benefits and costs related to different management options. Finally, the analysis will seek to develop a decision tool that will inform policy decisions and risk assessments on invasive species by providing the best available scientific information, estimate economic impacts, and address community preferences and values. We will test the above methods through four case studies, one in each of the four Alaska communities affected by Elodea. Elodea is an aggressive invasive aquatic plant, non-native to Alaska, which has been found across the state in fish-bearing water bodies.

Resilience of Estuarine Groundfish Communities to Future Changes in Glacial Effluent [R/101-10]

Glaciers are currently retreating at high latitudes in both Northern and Southern Hemispheres, and this is readily visible in Southeast Alaska. Furthermore, the rate of retreat is predicted to increase, yet we know little about how melting glaciers affect marine fish populations living in estuaries that lie in the direct path of glacial meltwater effluent. Our overall motivation for this research is to determine if estuarine groundfish communities are resilient to projected changes in the degree of glacial influence. Does an increase or decrease in glacial effluent impact the growth rate or mortality of these fishes? Our specific objective is to quantify mortality rates and growth rates in two representative estuarine groundfish species along a gradient of glacial influence. Overall, we expect to see changes in mortality and growth rates in starry flounder and staghorn sculpin as glacial influence on estuaries increases. Sampling will occur six times each in the summers of 2015 and 2016 at four estuaries in Juneau, Alaska, that vary in their glacial influence. At each sampling event, individuals of both species will be tagged with a small colored dermal tag and released. Tagging and measuring fish at multiple events for two years will allow us to estimate growth and mortality rates within and among years. These rates can then be compared among estuaries to determine if they are correlated with the degree of glacial influence. If correlations are found, this would indicate greater sensitivity and less resilience to this direct and immediate symptom of a warming climate, warranting greater vigilance in the management and protection of these culturally, economically, and ecologically important coastal habitats.

Capturing Spatial Behaviors of Observed and Unobserved Fishing Over Time Using Vessel Monitoring System Data [R/112-04]

Many studies have focused on the response of commercially relevant fish populations in the North Pacific to physical and biological dynamics within their ecosystems (e.g., climate variability, oil spills). We propose instead to focus on the resilience of commercial fishers themselves and to better understand the adaptive capacity of fishing fleets to such dynamics. For example, how far north are fishers willing to follow shifting fish populations? Are fishing trips longer during warmer years and do they subsequently spend less time in local port communities? Such simple questions are predicated on knowing when trips start and stop, where vessels fish, and how many miles they travel. For trips with fishery observers these questions are easy to answer, but observer coverage varies across fleets and years. Vessel monitoring systems (VMS), however, transmit a vessel's location at regular intervals (about 30 minutes) and they have been mandatory on all North Pacific vessels targeting pollock, cod, and Atka mackerel since 2002 (and additional fisheries and sectors in subsequent years). We will use VMS data to reconstruct trips and thus to determine durations and distances traveled for thousands of trips over more than a decade, regardless of observer coverage. Models based on VMS data also enable us to predict when vessels are fishing, and thus we can better characterize how fishing effort is distributed spatially and how resilient those spatial distributions may be over time. Moreover, these models also allow us to compare fishing locations for observed and unobserved vessels. In the context of resilience, this approach will ensure that the characterization of vessel movements and fishing locations is representative of entire fleets and not only the observed portions. This approach can be extended to all Bering Sea and Gulf of Alaska fleets with VMS.

Coastal Resilience in Sitka Sound: Monitoring Pinto Abalone and Kelp Forests in a Changing Climate [R/100-03]

Kelp forests have long been known as ecological powerhouses that support high levels of biodiversity and fish production, which helps to support local economies. They also serve as critical habitat to species of conservation concern, such as pinto (or northern) abalone (Haliotis kamtschatkana), an important subsistence species recently under consideration for listing as endangered in Alaska. However, kelp beds themselves are also susceptible to the very weather events they protect coastal communities against, and recent research indicates they may also be negatively impacted by ocean acidification. The pinto abalone is currently being considered for listing under the US Endangered Species Act. There is a renewed interest in assessing the current status of pinto abalone populations in Alaska. Fortunately, several long-term data sets are available that can be used as a baseline to quantify temporal trends as well. Resampling abalone density and size frequency at these historical survey locations will provide much needed data to assist with the upcoming evaluation by the National Marine Fisheries Service. Through a collaborative project with the Sitka Sound Science Center, the Alaska Department of Fish and Game, University of Alaska Southeast, and the US Coast Guard Academy, cadet interns will map, assess, and monitor Sitka Sound kelp beds and evaluate changing environmental conditions (pH, temperature, currents). Concurrently, scientists will collect density and demographic data on pinto abalone in Sitka Sound. Kelp beds and pinto abalone are important species in the coastal ecosystem of Sitka Sound. Monitoring these populations and correlating trends with factors related to climate change will help inform management decisions and help the community respond to a changing environment. Further, this study will be a conduit for training and mentoring a new generation of scientists and managers through internship programs at the Sitka Sound Science Center.