Evaluating the flexibility of a reflex action mortality predictor to determine bycatch mortality rates:

A case study of Tanner crab (*Chionoecetes bairdi*) bycaught in Alaska bottom trawls

Noëlle Yochum, Oregon State University

Craig Rose and Carwyn Hammond, NOAA Alaska Fisheries Science Center

Bycatch mortality

- A component of fisheries mortality
- **Discard-mortality:** captured, brought ondeck, released
 - Capture process
 - Air and sunlight exposure
 - Handing/ injury on deck
- Unobserved-mortality: encounters gear, without capture
 - Injury from gear or from captured animals

Bycatch mortality

- Direct observation
 - Mark-recapture
 - Acoustic telemetry
 - Captive holding
- Physiological assessment (stress)
 - Metabolic
 - Biochemical
 - Immune response

RAMP

- Reflex Action Mortality Predictor
 - (Davis and Ottmar, 2006; Davis, 2007)
- Relates reflex impairment to probability of mortality

RAMP

- Quantify bycatch mortality
- Evaluate influences on mortality
- Conservation engineering

- Fishes and invertebrates
- Pot and trawl gear

Case Study: Bycaught Tanner Crab

- Alaska bottom trawl fishery
 - · Bering Sea
 - · Gulf of Alaska
- Tanner and snow crab bycatch
 - Chionoecetes bairdi and C. opilio
- Zero retention
- Prohibited fishing grounds
- Bycatch limits

Bycatch Mortality: Tanner crab

Unobserved Tanner and snow crab bycatch

- Stoner et al., 2008, Rose et al., 2013; Hammond et al., 2013
 - Bottom trawl fishery in the Bering Sea
 - RAMP
 - Gear modifications

Discarded Tanner crab

- Blackburn and Schmidt (1988)
 - 17%: bottom trawl fishery in the Gulf of Alaska
 - Viability assessments
- Stevens (1990)
 - 78%: bottom trawl fishery in the Bering Sea
 - · At-sea holding

RAMP Reflexes for Tanner and Snow Crab Stoner et al., 2008

- Leg flare
- Leg retraction
- · Chela closure

- Eye retraction
- Mouth closure
- "Kick"

Bycatch Mortality: Tanner crab

Unobserved Tanner and snow crab bycatch

- Stoner et al., 2008, Rose et al., 2013; Hammond et al., 2013
 - Bottom trawl fishery in the Bering Sea
 - RAMP
 - Gear modifications

Discarded Tanner crab

- Blackburn and Schmidt (1988)
 - 17%: bottom trawl fishery in the Gulf of Alaska
 - Viability assessments
- Stevens (1990)
 - 78%: bottom trawl fishery in the Bering Sea
 - · At-sea holding

Evaluation of RAMP: "Flexibility"

Evaluation of RAMP: "Flexibility"

"Unobserved-mortality"

- · Hammond et al., 2013
- Bottom trawl fishery
- Research trip
- Bering Sea
- RAMP
- Auxiliary net
- Short tows
- Air exposure < 15 minutes
- Some recovery in water before assessment

"Discard-mortality"

- This study
- Bottom trawl fishery
- Commercial trip
- · Gulf of Alaska
- RAMP
- Commercial fishing
- Commercial tow duration
- Average air exposure 90 minutes (9-230 minutes)
- No recovery in water

Discard-mortality Study: Data Collection

- May 2011
- F/V Sea Mac

• 3-day shallow-water flatfish bottom trawl fishery

- Tow information:
 - Water depth
 - Temperature at depth
 - Tow duration
 - Catch size

Discard-mortality Study: Data Collection

- Crab information:
 - Carapace width (mm)
 - Sex
 - Chela loss
 - Shell condition (0-5)
 - RAMP "Score" (0-6)
 - Time out of water prior to assessment

Discard-mortality Study: Holding

On-board Tanks

- Plumbed on-board tanks (1-3 days)
- Cable tie with RFID chip (Hallprint)

Discard-mortality Study: Holding

At-sea Cages

- 92 crab
- Mixed Score, size, and sex
- 11 days of holding

Laboratory Tank

- 28 crab
- Mixed Score, size, and sex
- 12 days of holding
- Fed
- Temperature controlled

Discard-mortality Study: Data Analysis

- Logistic RAMP: Binary logistic regression
 - Response: Mortality
 - Predictors: Fishing and biological variables
 - Score
 - Sex
 - Shell condition
 - Haul duration
 - · Carapace width
 - Continuous
 - Binned: Small and large (¥90 mm)
 - Backward stepwise model selection
- Discrete RAMP
 - Actual proportion died

Study Comparison: Data Analysis

- Compare RAMPS
 - Visual
 - Fisher's exact test
 - Mantel-Haenszel test
 - Logistic RAMP: Combined data
 - "Study" as a predictor
 - Interaction between "Study" and "Score"
 - Backward stepwise model selection
 - Mortality rate estimation

Discard-mortality Study: Results

- 261 discard crab
- Immediate mortality: 12 crab
- 68% held crab survived

Discard-mortality Study: Results

- 86% within 1 day
- 92% within 2 days

Discard-mortality Study: Results

- Laboratory holding
 - Mortality at 12 days
 - 3 Score-zero crab died
- At-Sea Cage holding
 - · 3 crab died
 - Scores 1, 2, and 6

Study Comparison: Results

Selected predictors:

- Discard-mortality
 - Score

- · Combined data
 - Score
 - · Binned-width
 - Study
 - Study * Score

Study Comparison:

Results

Selected predictors:

- Discard-mortality
 - Score

- · Combined data
 - Score
 - · Binned-width
 - Study
 - Study * Score

Study Comparison:

Results

Selected predictors:

- Discard-mortality
 - Score

- · Combined data
 - Score
 - Binned-width
 - Study
 - Study * Score

Study Comparison: Results

Study Comparison: Conclusion

- Main difference:
 - Treatment of crab before assessment
 - Recovery period in water
 - Discard: No
 - Unobserved: Sometimes
 - Air exposure:
 - Discard: 90 minute average (9-230 minutes) of air exposure
 - Unobserved: <15 minutes

Study Comparison: Recommendations

• RAMP may produce more accurate mortality estimates when applied to animals experience similar stressors as those evaluated to create the RAMP, through similar methodology

• Especially important with large number of animals with intermediate Scores

Study Comparison: Recommendations

• Creating a RAMP:

- Create well documented, repeatable methods
- Collect data on all possible stressors and evaluate them for their contribution to mortality
- In methods, make it clear what is meant by "absent" and how immediate mortalities are treated
- Reflexes:
 - Assess RAMP reflexes in a standardized order
 - If reflexes influence other reflexes, do last or not at all
 - If reflex is difficult to determine presence/absence do not use

Conclusions

- RAMP is an effective tool for quantifying and evaluating bycatch mortality
- RAMP from this study can be used to determine discard mortality rates for Tanner crab in the Alaska bottom trawl fishery
- Additional study needs to be done on the role of a recovery period in water and air exposure on determining a RAMP "Score" (in process)

Acknowledgements

• Funding support:

- Northeast Consortium
 - · Collaborative Fisheries Research Graduate Fellowship
 - Northeast Consortium/ UNH (Chris Glass)
 - VIMS/ VA Sea Grant (Troy Hartley)
 - SMAST/ Umass (Steven Cadrin)
- NOAA National Cooperative Research Program
- Munson Wildlife Graduate Travel Scholarship

Additional Support:

- F/V Sea Mac (D. Sitton, J. Sanchez, and S. Perez)
- K. Swiney and the NOAA Alaska
 Fisheries Science Center (Kodiak, AK)
- J. Bonney and K. McGauley (Alaska Groundfish DataBank)
- · S. McEntire
- Hallprint (www.hallprint.com)

